Measurement of Mitochondrial ROS Formation

  • Soni Deshwal
  • Salvatore Antonucci
  • Nina Kaludercic
  • Fabio Di LisaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1782)


Reactive oxygen species (ROS) are involved in both physiological and pathological processes. This widely accepted concept is based more on the effects of antioxidant interventions than on reliable assessments of rates and sites of intracellular ROS formation. This argument applies also to mitochondria that are generally considered the major site for ROS formation, especially in skeletal and cardiac myocytes.

Detection of oxidative modifications of intracellular or circulating molecules is frequently used as a marker of ROS formation. However, this approach provides limited information on spatiotemporal aspects of ROS formation that have to be defined in order to elucidate the role of ROS in a given pathophysiological condition. This information can be obtained by means of fluorescent probes that allow monitoring ROS formation in cell-free extracts and isolated cells. Thus, this approach can be used to characterize ROS formation in both isolated mitochondria and mitochondria within intact cells. This chapter describes three major examples of the use of fluorescent probes for monitoring mitochondrial ROS formation. Detailed methods description is accompanied by a critical analysis of the limitations of each technique, highlighting the possible sources of errors in performing the assay and results interpretation.

Key words

Mitochondria Reactive oxygen species Fluorescence Amplex Red HyPer MitoTracker Red 


  1. 1.
    Egea J, Fabregat I, Frapart YM, Ghezzi P, Gorlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG et al (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Casas AI, Dao VT, Daiber A, Maghzal GJ, Di Lisa F, Kaludercic N, Leach S, Cuadrado A, Jaquet V, Seredenina T, Krause KH, Lopez MG, Stocker R, Ghezzi P, Schmidt HH (2015) Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid Redox Signal 23(14):1171–1185. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW 2nd, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ (2016) Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res 118(12):1960–1991. CrossRefPubMedGoogle Scholar
  4. 4.
    Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840(2):745–756. CrossRefPubMedGoogle Scholar
  5. 5.
    Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840(2):730–738. CrossRefPubMedGoogle Scholar
  6. 6.
    Kaludercic N, Deshwal S, Di Lisa F (2014) Reactive oxygen species and redox compartmentalization. Front Physiol 5:285. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dikalov SI, Harrison DG (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20(2):372–382. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mailloux RJ (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–398. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Starkov AA (2010) Measurement of mitochondrial ROS production. Methods Mol Biol 648:245–255. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light. Free Radic Biol Med 53(5):1080–1087. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69. CrossRefPubMedGoogle Scholar
  12. 12.
    Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di Lisa F, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106(1):193–202. CrossRefPubMedGoogle Scholar
  13. 13.
    Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW, Bedja D, De Mario A, Chen K, Gabrielson KL, Lindsey ML, Pacak K, Takimoto E, Shih JC, Kass DA, Di Lisa F, Paolocci N (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20(2):267–280. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276(4):2571–2575. CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang H, Goodman HM, Jansson S (1997) Antisense inhibition of the photosystem I antenna protein Lhca4 in Arabidopsis thaliana. Plant Physiol 115(4):1525–1531CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79(6):405–425. CrossRefPubMedGoogle Scholar
  17. 17.
    Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48(8):983–1001. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. CrossRefPubMedGoogle Scholar
  19. 19.
    Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103(41):15038–15043. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hsieh CW, Chu CH, Lee HM, Yuan Yang W (2015) Triggering mitophagy with far-red fluorescent photosensitizers. Sci Rep 5:10376. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuznetsov AV, Margreiter R, Amberger A, Saks V, Grimm M (2011) Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta 1813(6):1144–1152. CrossRefPubMedGoogle Scholar
  22. 22.
    Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S, De Lorenzo C, Iaffaioli RV, Arra C, Maurea N (2012) Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail 14(2):130–137. CrossRefPubMedGoogle Scholar
  23. 23.
    Tocchetti CG, Carpi A, Coppola C, Quintavalle C, Rea D, Campesan M, Arcari A, Piscopo G, Cipresso C, Monti MG, De Lorenzo C, Arra C, Condorelli G, Di Lisa F, Maurea N (2014) Ranolazine protects from doxorubicin-induced oxidative stress and cardiac dysfunction. Eur J Heart Fail 16(4):358–366. CrossRefPubMedGoogle Scholar
  24. 24.
    Kim SY, Kim SJ, Kim BJ, Rah SY, Chung SM, Im MJ, Kim UH (2006) Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med 38(5):535–545. CrossRefPubMedGoogle Scholar
  25. 25.
    Khouri MG, Douglas PS, Mackey JR, Martin M, Scott JM, Scherrer-Crosbie M, Jones LW (2012) Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation 126(23):2749–2763. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279(21):22284–22293. CrossRefPubMedGoogle Scholar
  27. 27.
    Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP (2011) In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14(6):819–829. CrossRefPubMedGoogle Scholar
  28. 28.
    Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. CrossRefPubMedGoogle Scholar
  29. 29.
    Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105(1):103–113CrossRefPubMedGoogle Scholar
  30. 30.
    Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS One 6(1):e14564. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bilan DS, Belousov VV (2016) HyPer family probes: state of the art. Antioxid Redox Signal 24(13):731–751. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Soni Deshwal
    • 1
  • Salvatore Antonucci
    • 1
  • Nina Kaludercic
    • 2
  • Fabio Di Lisa
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical SciencesUniversity of PadovaPadovaItaly
  2. 2.Neuroscience InstituteNational Research Council of Italy (CNR)PadovaItaly

Personalised recommendations