Skip to main content

Plate-Based Measurement of Respiration by Isolated Mitochondria

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1782))

Abstract

Measuring respiration rate can be a powerful way to assess energetic function in isolated mitochondria. Current, plate-based methods have several advantages over older, suspension-based systems, including greater throughput and the requirement of only μg quantities of material. In this chapter, we describe a plate-based method for measuring oxygen consumption by isolated adherent mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
EUR 44.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 186.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 197.99
Price includes VAT (Austria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O (1923) Versuche an überlebendem Carcinom-Gewebe (Methoden). Biochem Zeitschr 142:317–333

    CAS  Google Scholar 

  2. Warburg O (1924) Verbesserte Methode zur Messung der Atmung und Glykolyse. Biochem Z 152:51–63

    CAS  Google Scholar 

  3. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2006) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292(1):C125–C136. https://doi.org/10.1152/ajpcell.00247.2006

    Article  CAS  PubMed  Google Scholar 

  4. Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, Murphy AN (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6(7):e21746. https://doi.org/10.1371/journal.pone.0021746.t001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. https://doi.org/10.1113/expphysiol.2006.034330

    Article  PubMed  CAS  Google Scholar 

  6. Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, Ferrick DA, Nicholls DG, Brand MD (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81(16):6868–6878. https://doi.org/10.1021/ac900881z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ashour B, Hansford RG (1983) Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Biochem J 214:725–736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Letellier T, Malgat M, Mazat JP (1993) Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta 1141:58–64

    Article  PubMed  CAS  Google Scholar 

  9. Orr AL, Ashok D, Sarantos MR, Ng R, Shi T, Gerencser AA, Hughes RE, Brand MD (2014) Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One 9(2):e89938. https://doi.org/10.1371/journal.pone.0089938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Orr AL, Ashok D, Sarantos MR, Shi T, Hughes RE, Brand MD (2013) Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radic Biol Med 65:1047–1059. https://doi.org/10.1016/j.freeradbiomed.2013.08.170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Orr AL, Vargas L, Turk CN, Baaten JE, Matzen JT, Dardov VJ, Attle SJ, Li J, Quackenbush DC, Goncalves RL, Perevoshchikova IV, Petrassi HM, Meeusen SL, Ainscow EK, Brand MD (2015) Suppressors of superoxide production from mitochondrial complex III. Nat Chem Biol 11(11):834–836. https://doi.org/10.1038/nchembio.1910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hey-Mogensen M, Goncalves RL, Orr AL, Brand MD (2014) Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radic Biol Med 72:149–155. https://doi.org/10.1016/j.freeradbiomed.2014.04.007

    Article  PubMed  CAS  Google Scholar 

  13. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4(11):1582–1590. https://doi.org/10.1038/nprot.2009.151

    Article  PubMed  CAS  Google Scholar 

  14. Siess EA (1983) Influence of isolation media on the preservation of mitochondrial functions. Hoppe Seylers Z Physiol Chem 364:279–289

    Article  PubMed  CAS  Google Scholar 

  15. Whipps DE, Halestrap AP (1984) Rat liver mitochondria prepared in mannitol demonstrate increased mitochondrial volumes compared with mitochondria prepared in sucrose media. Biochem J 221:147–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Corcelli A, Saponetti MS, Zaccagnino P, Lopalco P, Mastrodonato M, Liquori GE, Lorusso M (2010) Mitochondria isolated in nearly isotonic KCl buffer: focus on cardiolipin and organelle morphology. Biochim Biophys Acta 1798(3):681–687. https://doi.org/10.1016/j.bbamem.2010.01.005

    Article  PubMed  CAS  Google Scholar 

  17. Mildvan AS (1987) Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium 6(1):28–33

    PubMed  CAS  Google Scholar 

  18. Panov AV, Vavilin VA, Lyakhovich VV, Brooks BR, Bonkovsky HL (2010) Effect of bovine serum albumin on mitochondrial respiration in the brain and liver of mice and rats. Bull Exp Biol Med 149:187–190

    Article  PubMed  CAS  Google Scholar 

  19. Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD (2017) Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J Biol Chem 292(17):7189–7207. https://doi.org/10.1074/jbc.M116.774471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mookerjee, S.A., Quinlan, C.L., Wong, HS., Dighe, P., Brand, M.D. (2018). Plate-Based Measurement of Respiration by Isolated Mitochondria. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 1782. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7831-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7831-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7830-4

  • Online ISBN: 978-1-4939-7831-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics