Skip to main content

Sculpting the Sculptors: Methods for Studying the Fetal Cholinergic Signaling on Systems and Cellular Scales

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1781))

Abstract

The non-neuronal, immunological effects of the cholinergic signaling are exerted on the system’s scale of observation via the vagus nerve and on the cellular scale via α7 nicotinic acetylcholine receptor (nAChR) signaling in myeloid cells of the periphery or brain’s microglia and astrocytes. The developmental effects of such multi-scale signaling can be conceived of as an example of psychoneuroimmunological (PNI) homeokinesis and, while reported in the literature, are not yet systematically well studied. To be better understood, the intricacy of the multi-scale interactions requires relevant preclinical animal models. Chronically instrumented non-anesthetized fetal sheep model comes with a strong track record of bench-to-bed translation and a large body of evidence for its strong resemblance to and relevance for human physiology on various scales of organization. Recently, there has been growing interest in pleiotropic effects of vagus nerve stimulation (VNS) on various organ systems such as innate immunity, metabolism, and emotion with implications for programming of PNI phenotype. Here we describe the procedures required to record and manipulate the vagus nerve activity in this large pregnant mammalian organism. Extending this in vivo model to in vitro, on the cellular scale, we present the method to manipulate the cholinergic signaling in ovine fetal microglia and astrocytes and analyze their responses on protein and RNA levels. Together these models can provide multi-scale-level mechanistic insights into the effects of cholinergic signaling on PNI phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fraschini M, Demuru M, Puligheddu M, Floridia S, Polizzi L, Maleci A, Bortolato M, Hillebrand A, Marrosu F (2014) The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS. Neurosci Lett 580:153–157

    Article  CAS  Google Scholar 

  2. Kwan H, Garzoni L, Liu HL, Cao M, Desrochers A, Fecteau G, Burns P, Frasch MG (2016) VNS in inflammation: systematic review of animal models and clinical studies. Bioelectron Med 3:1–6

    PubMed  PubMed Central  Google Scholar 

  3. Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11:343–353

    Article  Google Scholar 

  4. Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, Espinoza J, Hassan SS (2007) The fetal inflammatory response syndrome. Clin Obstet Gynecol 50:652–683

    Article  Google Scholar 

  5. Svedin P, Kjellmer I, Welin AK, Blad S, Mallard C (2005) Maturational effects of lipopolysaccharide on white-matter injury in fetal sheep. J Child Neurol 20:960–964

    Article  Google Scholar 

  6. Nitsos I, Rees SM, Duncan J, Kramer BW, Harding R, Newnham JP, Moss TJ (2006) Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig 13:239–247

    Article  CAS  Google Scholar 

  7. Yan E, Castillo-Melendez M, Nicholls T, Hirst J, Walker D (2004) Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr Res 55:855–863

    Article  CAS  Google Scholar 

  8. Burns P, Liu HL, Kuthiala S, Fecteau G, Desrochers A, Durosier LD, Cao M, Frasch MG (2015) Instrumentation of near-term fetal sheep for multivariate chronic non-anesthetized recordings. J Vis Exp (105):e52581

    Google Scholar 

  9. Carmel E, Burns P, Durosier D, Duchatellier C, Cao M, Desrochers A, Fecteau G, Frasch M (2012) Fetal brain MRI - experiences in the ovine model of cerebral inflammatory response. Reprod Sci 19(3):347A–348A

    Google Scholar 

  10. Pavlov VA, Tracey KJ (2012) The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol 8:743–754

    Article  CAS  Google Scholar 

  11. Pavlov VA, Tracey KJ (2015) Neural circuitry and immunity. Immunol Res 63:38–57

    Article  CAS  Google Scholar 

  12. Hosoi T, Okuma Y, Nomura Y (2000) Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol 279:R141–R147

    Article  CAS  Google Scholar 

  13. Farrokhi CB, Tovote P, Blanchard RJ, Blanchard DC, Litvin Y, Spiess J (2007) Cortagine: behavioral and autonomic function of the selective CRF receptor subtype 1 agonist. CNS Drug Rev 13:423–443

    Article  CAS  Google Scholar 

  14. Porges SW (1995) Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev 19:225–233

    Article  CAS  Google Scholar 

  15. Porges SW (2009) The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med 76(Suppl 2):S86–S90

    Article  Google Scholar 

  16. Que CL, Kenyon CM, Olivenstein R, Macklem PT, Maksym GN (2001) Homeokinesis and short-term variability of human airway caliber. J Appl Physiol (1985) 91:1131–1141

    Article  CAS  Google Scholar 

  17. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J (2014) Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul 7:871–877

    Article  Google Scholar 

  18. Liu RP, Fang JL, Rong PJ, Zhao Y, Meng H, Ben H, Li L, Huang ZX, Li X, Ma YG, Zhu B (2013) Effects of electroacupuncture at auricular concha region on the depressive status of unpredictable chronic mild stress rat models. Evid Based Complement Alternat Med 2013:789674

    PubMed  PubMed Central  Google Scholar 

  19. Ylikoski J, Lehtimaki J, Pirvola U, Makitie A, Aarnisalo A, Hyvarinen P, Ylikoski M (2017) Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Otolaryngol 137(4):426–431

    Article  Google Scholar 

  20. Frangos E, Ellrich J, Komisaruk BR (2015) Non-invasive Access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul 8:624–636

    Article  Google Scholar 

  21. Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 9:71

    Article  CAS  Google Scholar 

  22. Diz-Chaves Y, Astiz M, Bellini MJ, Garcia-Segura LM (2013) Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice. Brain Behav Immun 28:196–206

    Article  CAS  Google Scholar 

  23. Slusarczyk J, Trojan E, Glombik K, Budziszewska B, Kubera M, Lason W, Popiolek-Barczyk K, Mika J, Wedzony K, Basta-Kaim A (2015) Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci 9:82

    Article  Google Scholar 

  24. Cortes M, Cao M, Liu HL, Burns P, Moore C, Fecteau G, Desrochers A, Barreiro LB, Antel JP, Frasch MG (2017) RNAseq profiling of primary microglia and astrocyte cultures in near-term ovine fetus: a glial in vivo-in vitro multi-hit paradigm in large mammalian brain. J Neurosci Methods 276:23–32

    Article  CAS  Google Scholar 

  25. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  Google Scholar 

  26. Cao M, Cortes M, Moore CS, Leong SY, Durosier LD, Burns P, Fecteau G, Desrochers A, Auer RN, Barreiro LB, Antel JP, Frasch MG (2015) Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation. Front Cell Neurosci 9:294

    Article  Google Scholar 

  27. Cortes M, Cao M, Liu HL, Moore CS, Durosier LD, Burns P, Fecteau G, Desrochers A, Barreiro LB, Antel J (2017) α7 nicotinic acetylcholine receptor signaling modulates the inflammatory and iron homeostasis in fetal brain microglia. bioRxiv:097295

    Google Scholar 

  28. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343

    Article  CAS  Google Scholar 

  29. Frasch MG, Szynkaruk M, Prout AP, Nygard K, Cao M, Veldhuizen R, Hammond R, Richardson BS (2016) Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway? J Neuroinflammation 13:103

    Article  CAS  Google Scholar 

  30. Durafourt BA, Moore CS, Blain M, Antel JP (2013) Isolating, culturing, and polarizing primary human adult and fetal microglia. Methods Mol Biol 1041:199–211

    Article  CAS  Google Scholar 

  31. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  32. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  Google Scholar 

  33. Anders S, Pyl TP, Huber W (2015) HTSeq — a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  Google Scholar 

  34. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15(12):550

    Article  Google Scholar 

  35. Warnes GR (2008) Gplots: various R programming tools for plotting data

    Google Scholar 

  36. Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311

    Article  CAS  Google Scholar 

  37. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res 38:W96–W102

    Article  CAS  Google Scholar 

  38. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  Google Scholar 

  39. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–D342

    Article  CAS  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  41. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support from the Molly Towell Perinatal Research Foundation, Canadian Institutes of Health Research (CIHR), and Fonds de Recherche du Québec—Santé (FRQS) (to MGF).

The authors wish to thank Esther Simard, Marco Bosa, Carl Bernard, Dr. Lucien Daniel Durosier, Hai Lun Liu, and Carmen Movila for technical assistance and Jan Hamanishi for graphical design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Frasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frasch, M.G. et al. (2018). Sculpting the Sculptors: Methods for Studying the Fetal Cholinergic Signaling on Systems and Cellular Scales. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 1781. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7828-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7828-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7827-4

  • Online ISBN: 978-1-4939-7828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics