Motor Assessment in Huntington’s Disease Mice

  • Stephen B. DunnettEmail author
  • Simon P. Brooks
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)


Motor deficits are a characteristic consequence of striatal damage, whether induced by experimental lesions, or in genetic models of Huntington’s disease involving polyglutamine expansion in the huntingtin protein. With the growing power of genetic models and genetic tools for analysis, mice are increasingly the animal model of choice, and objective quantitative measures of motor performance are in demand for experimental analysis of disease pathophysiology, progression, and treatment. We present methodological protocols for six of the most common tests of motor function—ranging from spontaneous activity, locomotor coordination, balance, and skilled limb use—that are simple, effective, efficient, and widely used for motor assessment in Huntington’s disease research in experimental mice.


Motor tests Transgenic mice Rotarod Locomotor activity Raised beam Gait analysis Staircase test Motor coordination Balance Dyskinesia 



We thank Ugo Basile and Campden Instruments for granting permission to reproduce Figs. 2 and 5, respectively. SBD declares a financial interest in receiving royalty payments from Campden Instruments on commercial sales of the staircase test apparatus.


  1. 1.
    Magendie F (1823) Note sur les fonctions des corps striés et des tuberclules quadrijumeaux. J Physiol Exp Pathol 3:376–381Google Scholar
  2. 2.
    Laursen AM (1963) Corpus striatum. Acta Physiol Scand Suppl 211:1–106Google Scholar
  3. 3.
    Huntington G (1872) On chorea. Med Surg Rep 26:317–321Google Scholar
  4. 4.
    Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506CrossRefPubMedGoogle Scholar
  5. 5.
    Crawley JN (2000) What’s wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice. Wiley, New YorkGoogle Scholar
  6. 6.
    Carter RJ, Lione LA, Humby T et al (1999) Characterisation of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257CrossRefPubMedGoogle Scholar
  7. 7.
    Dunnett SB, Bensadoun JC, Pask T et al (2003) Assessment of motor behaviour in transgenic mice. In: Crawley JN (ed) Mouse behaviour phenotyping. Society for Neuroscience, Washington, pp 1–12Google Scholar
  8. 8.
    Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529CrossRefPubMedGoogle Scholar
  9. 9.
    Brooks SP, Trueman RC, Dunnett SB (2012) Assessment of motor coordination and balance in mice. Curr Protoc Mouse Biol 2:37–53PubMedGoogle Scholar
  10. 10.
    Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neuroligical deficit in rats and mice. J Am Pharm Assoc 46:208–209CrossRefGoogle Scholar
  11. 11.
    Wallace JE, Krauter EE, Campbell BA (1980) Motor and reflexive behavior in the aging rat. J Gerontol 35:364–270CrossRefPubMedGoogle Scholar
  12. 12.
    Schallert T, Woodlee MT, Fleming SM (2002) Disentangling multiple types of recovery from brain injury. In: Krieglstein J, Klumpp S (eds) Pharmacology of cerebral ischemia. Medpharm Scientific Publishers, Stuttgart, pp 201–216Google Scholar
  13. 13.
    Aguiar P, Mendonca L, Galhardo V (2007) OpenControl: a free opensource software for video tracking and automated control of behavioral mazes. J Neurosci Methods 166:66–72CrossRefPubMedGoogle Scholar
  14. 14.
    Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110CrossRefPubMedGoogle Scholar
  15. 15.
    Klein A, Sacrey LA, Whishaw IQ et al (2012) The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 36:1030–1042CrossRefPubMedGoogle Scholar
  16. 16.
    Whishaw IQ, O’connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109:805–843CrossRefPubMedGoogle Scholar
  17. 17.
    Montoya CP, Campbell-Hope LJ, Pemberton KD et al (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228CrossRefPubMedGoogle Scholar
  18. 18.
    Baird AL, Meldrum A, Dunnett SB (2001) The staircase test of skilled reaching in mice. Brain Res Bull 54:243–250CrossRefPubMedGoogle Scholar
  19. 19.
    Dunnett SB, Carter RJ, Watts C et al (1998) Striatal transplantation in a transgenic mouse model of Huntington’s disease. Exp Neurol 154:31–40CrossRefPubMedGoogle Scholar
  20. 20.
    Kloth V, Klein A, Loettrich D et al (2006) Colour-coded pellets increase the sensitivity of the staircase test to differentiate skilled forelimb performances of control and 6-hydroxydopamine lesioned rats. Brain Res Bull 70:68–80CrossRefPubMedGoogle Scholar
  21. 21.
    Trueman RC, Brooks SP, Jones L et al (2008) Time course of choice reaction time deficits in the HdhQ92/Q92 knock-in mouse model of Huntington’s disease in the operant Serial Implicit Learning Task (SILT). Behav Brain Res 189:317–324CrossRefPubMedGoogle Scholar
  22. 22.
    Fernagut PO, Diguet E, Stefanova N et al (2002) Subacute systemic 3-nitropropionic acid intoxication induces a distinct motor disorder in adult C57Bl/6 mice: behavioural and histopathological characterisation. Neuroscience 114:1005–1017CrossRefPubMedGoogle Scholar
  23. 23.
    Brooks SP, Jones L, Dunnett SB (2012) Behavioural, anatomical and genetic characterisation of mouse and rat models of Huntington’s disease. Brain Res Bull 88:81–285CrossRefPubMedGoogle Scholar
  24. 24.
    Smith GA, Heuer A, Klein A et al (2012) Amphetamine-induced dyskinesia in transplanted hemiparkinsonian mice. J Parkinsons Dis 2:107–113PubMedGoogle Scholar
  25. 25.
    Park Y-G, Choi JH, Lee C et al (2015) Heterogeneity of tremor mechanisms assessed by tremor-related cortical potential in mice. Mol Brain 8:3. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kudo T, Schroeder A, Loh DH et al (2011) Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp Neurol 228:80–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brain Repair GroupCardiff UniversityCardiffUK
  2. 2.The Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations