Advertisement

Assessing Mitochondrial Function in In Vitro and Ex Vivo Models of Huntington’s Disease

  • I. Luísa Ferreira
  • Catarina Carmo
  • Luana Naia
  • Sandra I. Mota
  • A. Cristina Rego
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)

Abstract

Mitochondrial dysfunction has gained a preponderant role in the pathogenesis of Huntington’s disease (HD). Mutant huntingtin (mHTT) directly interacts with mitochondria in a deleterious manner. As the central hub of the cell, not only mitochondrial bioenergetics is affected but there is also diminished mitochondrial membrane potential (Δψm) and altered production of reactive oxygen species (ROS). Restoration of mitochondrial function has proven to be a major player in the search and establishment of therapeutics for HD patients. As such, performing an overall study of mitochondrial function is crucial. In this chapter, we describe some methodologies used to study mitochondrial function by determining the oxygen consumption, changes in Δψm, mitochondrial calcium handling, and levels of mitochondrial ROS. Here we focus on biological samples derived from HD versus control cells and/or animal models, namely functional isolated brain mitochondria, an ex vivo animal model, and cultured cells, including cell lines and primary neural cultures, as in vitro models.

Keywords

Mitochondria Cells Neurons Mitochondrial function Oxygen consumption Bioenergetics Mitochondrial membrane potential Mitochondrial calcium handling Mitochondrial reactive oxygen species 

Notes

Acknowledgments

This work was supported by Mantero Belard Neuroscience Prize 2013 (first edition), funded by Santa Casa da Misericórdia de Lisboa (SCML); FLAD Life Science 2020 project, FEDER through “Programa Operacional Factores de Competitividade–COMPETE” and Fundação para a Ciência e a Tecnologia—FCT (UID/NEU/04539/2013; PEst-C/SAU/LA0001/2013-2014); I.L.F. and S.I.M. were supported by the FCT postdoctoral fellowships SFRH/BPD/108493/2015 and SFRH/BPD/99219/2013, respectively; and L.N. was supported by PhD fellowship SFRH/BD/86655/2012.

References

  1. 1.
    Saft C, Zange J, Andrich J et al (2005) Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease. Mov Disord 20:674–679CrossRefPubMedGoogle Scholar
  2. 2.
    Panov AV, Gutekunst C-A, Leavitt BR et al (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5(8):731–737CrossRefPubMedGoogle Scholar
  3. 3.
    Cui L, Jeong H, Borovecki F et al (2006) Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69CrossRefPubMedGoogle Scholar
  4. 4.
    Choo YS, Johnson GVW, MacDonald M et al (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13:1407–1420CrossRefPubMedGoogle Scholar
  5. 5.
    Song W, Chen J, Petrilli A et al (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17:377–382CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Napoli E, Wong S, Hung C et al (2013) Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington’s disease. Hum Mol Genet 22:989–1004CrossRefPubMedGoogle Scholar
  7. 7.
    Yano H, Baranov SV, Baranova OV et al (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 17:822–831CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Goebel HH, Heipertz R, Scholz W et al (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 28:23CrossRefPubMedGoogle Scholar
  9. 9.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Leverin A-L, Han W et al (2011) Isolation of brain mitochondria from neonatal mice. J Neurochem 119:1253–1261CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rogers GW, Brand MD, Petrosyan S et al (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6:e21746CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174CrossRefPubMedGoogle Scholar
  13. 13.
    Solaini G, Sgarbi G, Lenaz G, Baracca A (2007) Evaluating mitochondrial membrane potential in cells. Biosci Rep 27:11–21CrossRefPubMedGoogle Scholar
  14. 14.
    Perry SW, Norman JP, Barbieri J et al (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scaduto RC, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pellman JJ, Hamilton J, Brustovetsky T, Brustovetsky N (2015) Ca2+ handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington’s disease. J Neurochem 134:652–667CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ferreira IL, Ferreiro E, Schmidt J et al (2015) Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 36:680–692CrossRefPubMedGoogle Scholar
  20. 20.
    Brustovetsky N (2016) Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol Neurobiol 53:2944–2953.  https://doi.org/10.1007/s12035-015-9188-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Ayala-Peña S (2013) Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radic Biol Med 62:102–110CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168CrossRefPubMedGoogle Scholar
  23. 23.
    Dickinson BC, Lin VS, Chang CJ (2013) Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8:1249–1259.  https://doi.org/10.1038/nprot.2013.064 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Polster BM, Nicholls DG, Ge SX, Roelofs BA (2014) Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol 547:225–250CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sieprath T, Corne TDJ, Willems PHGM et al (2016) Integrated high-content quantification of intracellular ROS levels and mitochondrial morphofunction. Adv Anat Embryol Cell Biol 219:149–177CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang X, Gao F (2015) Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 49:374–382CrossRefPubMedGoogle Scholar
  27. 27.
    Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103:15038–15043CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Herbert AD, Carr AM, Hoffmann E (2014) FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis. PLoS One 9:e114749CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ferreira IL, Nascimento MV, Ribeiro M et al (2010) Mitochondrial-dependent apoptosis in Huntington’s disease human cybrids. Exp Neurol 222:243–255CrossRefPubMedGoogle Scholar
  30. 30.
    Towne V, Will M, Oswald B, Zhao Q (2004) Complexities in horseradish peroxidase-catalyzed oxidation of dihydroxyphenoxazine derivatives: appropriate ranges for pH values and hydrogen peroxide concentrations in quantitative analysis. Anal Biochem 334:290–296CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex red to resorufin: implications of exposing the Amplex red assay to light. Free Radic Biol Med 53:1080–1087CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Roelofs BA, Ge SX, Studlack PE, Polster BM (2015) Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radic Biol Med 86:250–258CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. Luísa Ferreira
    • 1
    • 2
  • Catarina Carmo
    • 1
  • Luana Naia
    • 1
    • 2
  • Sandra I. Mota
    • 1
    • 2
  • A. Cristina Rego
    • 1
    • 2
    • 3
  1. 1.CNC—Center for Neuroscience and Cell Biology, University of Coimbra—polo ICoimbraPortugal
  2. 2.IIIUC—Institute for Interdisciplinary Research, University of Coimbra—polo IICoimbraPortugal
  3. 3.FMUC-Faculty of Medicine, University of Coimbra—polo IIICoimbraPortugal

Personalised recommendations