Biofluid Biomarkers in Huntington’s Disease

  • Filipe B. Rodrigues
  • Lauren M. Byrne
  • Edward J. WildEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)


Huntington’s disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.

Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.

In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.


Huntington’s disease Biomarkers Cerebrospinal fluid Blood Urine Review 


  1. 1.
    Travessa AM, Rodrigues FB, Mestre TA et al (2016) Fifteen years of clinical trials in Huntington’s disease: too many clinical trial failures. Mov Disord 31:S365–S366Google Scholar
  2. 2.
    Mestre T, Ferreira J, Coelho MM et al (2009) Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev (3):Cd006456Google Scholar
  3. 3.
    Rodrigues FB, Mestre T, Duarte SD et al (2017) [122] Therapeutic interventions for symptomatic treatment in Huntington’s disease – a Cochrane review. In: CHDI (ed) CHDI 12th annual HD therapeutics conference, St Julien, Malta, 2017Google Scholar
  4. 4.
    Mestre T, Ferreira J, Coelho MM et al (2009) Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev (3):Cd006455Google Scholar
  5. 5.
    Rodrigues FB, Mestre T, Duarte SD et al (2017) [121] Therapeutic interventions for disease progression in Huntington’s disease – a Cochrane review. In: CHDI 12th annual HD therapeutics conference, St Julien, Malta, 2017Google Scholar
  6. 6.
    Wild EJ (2016) Huntington’s disease: the most curable incurable brain disorder? EBioMedicine 8:3–4PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rodrigues FB, Wild EJ (2017) Clinical trials corner: September 2017. J Huntingtons Dis 6(3):255–263. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rodrigues FB, Wild EJ (2018) Huntignton's disease clinical trials corner: February 2018. J Huntingtons Dis 7(1):89–98. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216PubMedCrossRefGoogle Scholar
  10. 10.
    Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Biglan KM, Zhang Y, Long JD et al (2013) Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front Aging Neurosci 5:12. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Byrne LM, Wild EJ (2016) Cerebrospinal fluid biomarkers for Huntington’s disease. J Huntingtons Dis 5:1–13PubMedCrossRefGoogle Scholar
  13. 13.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  14. 14.
    Gusella JF, Wexler NS, Conneally PM et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930PubMedCrossRefGoogle Scholar
  16. 16.
    Wetzel R (2012) Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 421:466–449PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Weiss A, Träger U, Wild EJ et al (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Investig 122:3731–3736PubMedCrossRefGoogle Scholar
  18. 18.
    Moscovitch-Lopatin M, Weiss A, Rosas HD et al (2010) Optimization of an HTRF assay for the detection of soluble mutant huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease. PLoS Curr 2:Rrn1205PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Moscovitch-Lopatin M, Goodman RE, Eberly S et al (2013) HTRF analysis of soluble huntingtin in PHAROS PBMCs. Neurology 81:1134–1140PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Massai L, Petricca L, Magnoni L et al (2013) Development of an ELISA assay for the quantification of soluble huntingtin in human blood cells. BMC Biochem 14:34PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Southwell AL, Smith SEP, Davis TR et al (2015) Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci Rep 5:12166PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wild EJ, Boggio R, Langbehn D et al (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Investig 125:1979–1986PubMedCrossRefGoogle Scholar
  23. 23.
    Weiss A, Abramowski D, Bibel M et al (2009) Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington’s disease. Anal Biochem 395:8–15PubMedCrossRefGoogle Scholar
  24. 24.
    Paganetti P, Weiss A, Trapp M et al (2009) Development of a method for the high-throughput quantification of cellular proteins. Chembiochem 10:1678–1688PubMedCrossRefGoogle Scholar
  25. 25.
    Fodale V, Boggio R, Daldin M et al (2017) Validation of ultrasensitive mutant huntingtin detection in human cerebrospinal fluid by single molecule counting immunoassay. J Huntingtons Dis 6:349–361. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dunlap CB (1927) Pathologic changes in Huntington’s chorea: with special reference to the corpus striatum. Arch Neurol Psychiatr 18:867–943CrossRefGoogle Scholar
  27. 27.
    Terrence CF, Delaney JF, Alberts MC (1977) Computed tomography for Huntington’s disease. Neuroradiology 13:173–175PubMedCrossRefGoogle Scholar
  28. 28.
    Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Tabrizi SJ, Scahill RI, Durr A et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tabrizi SJ, Reilmann R, Roos RAC et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Paulsen JS, Langbehn DR, Stout JC et al (2008) Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 79:874–880PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Constantinescu R, Romer M, Oakes D et al (2009) Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 15:245–248PubMedCrossRefGoogle Scholar
  33. 33.
    Rodrigues FB, Byrne LM, Tabrizi SJ et al (2016) CSF inflammatory and cell death biomarkers in Huntington’s disease – an exploratory cross-sectional study. Mov Disord 31:S353Google Scholar
  34. 34.
    Niemela V, Landtblom AM, Blennow K, Sundblom J (2017) Tau or neurofilament light—which is the more suitable biomarker for Huntington’s disease? PLoS One 12:e0172762PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Byrne LM, Rodrigues FB, Blennow K et al (2017) Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol 16:601–609PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Vinther-Jensen T, Börnsen L, Budtz-Jørgensen E, Ammitzbøll C, Larsen IU, Hjermind LE, Sellebjerg F, Nielsen JE (2016) Selected CSF biomarkers indicate no evidence of early neuroinflammation in Huntington disease. Neurol Neuroimmunol Neuroinflamm 3:e287. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Niemelä V, Burman J, Blennow K, Zetterberg H, Larsson A, Sundblom J (2018) Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS One 13:e0193492. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Johnson EB, Byrne LM, Gregory S et al (2018) Neurofilament light protein in blood predictsregional atrophy in Huntington disease. Neurology 90:e717–e723. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wild EJ, Petzold A, Keir G, Tabrizi SJ (2007) Plasma neurofilament heavy chain levels in Huntington’s disease. Neurosci Lett 417:231–233PubMedCrossRefGoogle Scholar
  40. 40.
    Constantinescu R, Romer M, Zetterberg H et al (2011) Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 17:714–715PubMedCrossRefGoogle Scholar
  41. 41.
    Rodrigues FB, Byrne L, McColgan P et al (2016) Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 139:22–25PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Stoy N, Mackay GM, Forrest CM et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J Neurochem 93:611–623PubMedCrossRefGoogle Scholar
  43. 43.
    Silajdzic E, Rezeli M, Vegvari A et al (2013) A critical evaluation of inflammatory markers in Huntington’s disease plasma. J Huntingtons Dis 2:125–134PubMedGoogle Scholar
  44. 44.
    Vinther-Jensen T, Budtz-Jørgensen E, Simonsen AH, Nielsen JE, Hjermind LE (2014) YKL-40 in cerebrospinal fluid in Huntington’s disease--a role in pathology or a nonspecific response to inflammation? Parkinsonism Relat Disord 20:1301–1303PubMedCrossRefGoogle Scholar
  45. 45.
    Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86:7611–7615PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198PubMedCrossRefGoogle Scholar
  47. 47.
    Cairns NJ, Lee VM, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204:438–449PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zetterberg H, Smith DH, Blennow K (2013) Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9:201–210PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Fernandez-Nogales M, Cabrera JR, Santos-Galindo M et al (2014) Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20:881–885PubMedCrossRefGoogle Scholar
  50. 50.
    Vuono R, Winder-Rhodes S, de Silva R et al (2015) The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain 138:1907–1918PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gisslen M, Price RW, Andreasson U et al (2016) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3:135–140PubMedCrossRefGoogle Scholar
  52. 52.
    Steinacker P, Semler E, Anderl-Straub S et al (2017) Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 88:961–969PubMedCrossRefGoogle Scholar
  53. 53.
    Rojas JC, Karydas A, Bang J et al (2016) Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol 3:216–225PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rohrer JD, Woollacott IO, Dick KM et al (2016) Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87:1329–1336PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Meeter LH, Dopper EG, Jiskoot LC et al (2016) Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol 3:623–636PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lu CH, Macdonald-Wallis C, Gray E et al (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–2257PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gaiottino J, Norgren N, Dobson R et al (2013) Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 8:e75091PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Björkqvist M, Wild EJ, Tabrizi SJ (2009) Harnessing immune alterations in neurodegenerative diseases. Neuron 64:21–24PubMedCrossRefGoogle Scholar
  59. 59.
    Dalrymple A, Wild EJ, Joubert R et al (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6:2833–2840PubMedCrossRefGoogle Scholar
  60. 60.
    Miller JR, Lo KK, Andre R et al (2016) RNA-Seq of Huntington’s disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Hum Mol Genet 25:2893–2904PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: What's in the pipeline? Mov Disord 29:1434–1445PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    A Clinical Study in Subjects With Huntington’s Disease to Assess the Efficacy and Safety of Three Oral Doses of Laquinimod (2014) Bethesda (MD): National Library of Medicine (US). Accessed 02 Mar 2016
  63. 63.
    Rodrigues FB, Byrne LM, McColgan P et al (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11:e0163479PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mochel F, Charles P, Seguin F et al (2007) Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS One 2:e647PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Björkqvist M, Wild EJ, Thiele J et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wang R, Ross CA, Cai H et al (2014) Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front Physiol 5:231PubMedPubMedCentralGoogle Scholar
  67. 67.
    Leblhuber F, Walli J, Jellinger K et al (1998) Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med 36:747–750PubMedCrossRefGoogle Scholar
  68. 68.
    Sanchez-Lopez F, Tasset I, Aguera E et al (2012) Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol Res 34:721–724PubMedCrossRefGoogle Scholar
  69. 69.
    Trager U, Andre R, Lahiri N et al (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NF B pathway dysregulation. Brain 137:819–833PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chang K-H, Wu Y-R, Chen Y-C, Chen C-M (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121–127PubMedCrossRefGoogle Scholar
  71. 71.
    Forrest CM, Mackay GM, Stoy N et al (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112:112–122PubMedCrossRefGoogle Scholar
  72. 72.
    Squitieri F, Orobello S, Cannella M et al (2009) Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging 36:1113–1120PubMedCrossRefGoogle Scholar
  73. 73.
    Battaglia G, Cannella M, Riozzi B et al (2011) Early defect of transforming growth factor beta1 formation in Huntington’s disease. J Cell Mol Med 15:555–571PubMedCrossRefGoogle Scholar
  74. 74.
    Mattsson N, Tabatabaei S, Johansson P et al (2011) Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med 13:151–159PubMedCrossRefGoogle Scholar
  75. 75.
    Byrne LM, Rodrigues FB, Johnson EB, De Vita E, Blennow K, Scahill R, Zetterberg H, Heslegrave A, Wild EJ (2018) Cerebrospinal fluid neurogranin and TREM2 in Huntington’s disease. Sci Rep. 8.
  76. 76.
    Huang Y-C, Wu Y-R, Tseng M-Y et al (2011) Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PLoS One 6:e15809. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Christofides J, Bridel M, Egerton M et al (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97:1078–1088PubMedCrossRefGoogle Scholar
  78. 78.
    Wild E, Magnusson A, Lahiri N et al (2011) Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr 3:RRN1231PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Krzyszton-Russjan J, Zielonka D, Jackiewicz J et al (2013) A study of molecular changes relating to energy metabolism and cellular stress in people with Huntington’s disease: looking for biomarkers. J Bioenerg Biomembr 45:71–85PubMedCrossRefGoogle Scholar
  80. 80.
    Bouwens JA, Hubers AA, van Duijn E et al (2014) Acute-phase proteins in relation to neuropsychiatric symptoms and use of psychotropic medication in Huntington’s disease. Eur Neuropsychopharmacol 24:1248–1256PubMedCrossRefGoogle Scholar
  81. 81.
    Tasset I, Sanchez-Lopez F, Aguera E et al (2012) NGF and nitrosative stress in patients with Huntington’s disease. J Neurol Sci 315(1–2):133–136PubMedCrossRefGoogle Scholar
  82. 82.
    Phillipson OT, Bird ED (1977) Plasma glucose, non-esterified fatty acids and amino acids in Huntington’s chorea. Clin Sci Mol Med 52:311–318PubMedGoogle Scholar
  83. 83.
    Duran R, Barrero FJ, Morales B et al (2010) Oxidative stress and plasma aminopeptidase activity in Huntington’s disease. J Neural Transm 117:325–332PubMedCrossRefGoogle Scholar
  84. 84.
    Josefsen K, Nielsen SM, Campos A et al (2010) Reduced gluconeogenesis and lactate clearance in Huntington’s disease. Neurobiol Dis 40:656–662PubMedCrossRefGoogle Scholar
  85. 85.
    Passonneau J, Lowry O (1993) Enzymatic analysis: a practical guide. Humana Press, NJCrossRefGoogle Scholar
  86. 86.
    Ciammola A, Sassone J, Sciacco M et al (2011) Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington’s disease. Mov Disord 26:130–137PubMedCrossRefGoogle Scholar
  87. 87.
    Banks WA, Plotkin SR, Kastin AJ (1995) Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation 2:161–165PubMedCrossRefGoogle Scholar
  88. 88.
    Aronson NN, Blanchard CJ, Madura JD (1997) Homology modeling of glycosyl hydrolase family 18 enzymes and proteins. J Chem Inf Comput Sci 37:999–1005PubMedCrossRefGoogle Scholar
  89. 89.
    Bonneh-Barkay D, Bissel SJ, Kofler J et al (2012) Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol 22:530–546PubMedCrossRefGoogle Scholar
  90. 90.
    Cooper AJL, Jeitner TM, Gentile V, Blass JP (2002) Cross linking of polyglutamine domains catalyzed by tissue transglutaminase is greatly favored with pathological-length repeats: does transglutaminase activity play a role in (CAG)n/Qn-expansion diseases? Neurochem Int 40:53–67PubMedCrossRefGoogle Scholar
  91. 91.
    Jeitner TM, Bogdanov MB, Matson WR et al (2008) Nε-(γ-l-Glutamyl)-l-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. J Neurochem 79:1109–1112CrossRefGoogle Scholar
  92. 92.
    Jeitner TM, Matson WR, Folk JEBlass JP, Cooper AJL (2008) Increased levels of γ-glutamylamines in Huntington disease CSF. J Neurochem 106:37–44PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Raptor Plans to Advance RP103 in a Registration Study in Huntington’s Disease Based on Favorable Treatment Effects at 36 Months in CYST-HD Trial (2015).
  94. 94.
    Enna SJ, Wood JH, Snyder SH (1977) γ-Aminobutyric acid (GABA) in human cerebrospinal fluid: radioreceptor assay. J Neurochem 28:1121–1124PubMedCrossRefGoogle Scholar
  95. 95.
    Manyam NV, Hare TA, Katz L, Glaeser BS (1978) Huntington’s disease. Cerebrospinal fluid GABA levels in at-risk individuals. Arch Neurol 35:728–730PubMedCrossRefGoogle Scholar
  96. 96.
    Böhlen P, Tell G, Schechter PJ et al (1980) Cerebrospinal fluid homocarnosine in Huntington’s disease. Life Sci 26:1009–1012PubMedCrossRefGoogle Scholar
  97. 97.
    Uhlhaas S, Lange H, Wappenschmidt J, Olek K (1986) Free and conjugated CSF and plasma GABA in Huntington’s chorea. Acta Neurol Scand 74:261–265PubMedCrossRefGoogle Scholar
  98. 98.
    Bonnet AM, Tell G, Schechter PJ et al (1987) Cerebrospinal fluid GABA and homocarnosine concentrations in patients with Friedreich’s ataxia, Parkinson’s disease, and Huntington’s chorea. Mov Disord 2:117–123PubMedCrossRefGoogle Scholar
  99. 99.
    Nicoli F, Vion-Dury J, Maloteaux JM et al (1993) CSF and serum metabolic profile of patients with Huntington’s chorea: a study by high resolution proton NMR spectroscopy and HPLC. Neurosci Lett 154(1–2):47–51PubMedCrossRefGoogle Scholar
  100. 100.
    Wagner L, Bjorkqvist M, Lundh SH et al (2016) Neuropeptide Y (NPY) in cerebrospinal fluid from patients with Huntington’s disease: increased NPY levels and differential degradation of the NPY fragment. J Neurochem 137:820–837PubMedCrossRefGoogle Scholar
  101. 101.
    Consolo S, Ladinsky H, Bianchi S, Caraceni T (1977) The cerebrospinal fluid choline levels in patients with Huntington’s chorea. Negative effect of haloperidol treatment. Arch Psychiatr Nervenkr 223:265–270PubMedCrossRefGoogle Scholar
  102. 102.
    Saelens JK, Allen MP, Simke JP (1970) Determination of acetylcholine and choline by an enzymatic assay. Arch Int Pharmacodyn Ther 186:279–286PubMedGoogle Scholar
  103. 103.
    Manyam BV, Giacobini E, Colliver JA (1990) Cerebrospinal fluid acetylcholinesterase and choline measurements in Huntington’s disease. J Neurol 237:281–284PubMedCrossRefGoogle Scholar
  104. 104.
    McCaman MW, Tomey LR, McCaman RE (1968) Radiomimetric assay of acetylcholinesterase activity in submicrogram amounts of tissue. Life Sci 7:233–244PubMedCrossRefGoogle Scholar
  105. 105.
    Johnson CD, Russell RL (1975) A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem 64:229–238PubMedCrossRefGoogle Scholar
  106. 106.
    St Clair DM, Brock DJ, Barron L (1986) A monoclonal antibody assay technique for plasma and red cell acetylcholinesterase activity in Alzheimer’s disease. J Neurol Sci 73:169–176PubMedCrossRefGoogle Scholar
  107. 107.
    Garrett MC, Soares-da-Silva P (1992) Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington’s disease: evidence for an overactive dopaminergic brain transmission. J Neurochem 58:101–106PubMedCrossRefGoogle Scholar
  108. 108.
    Belendiuk K, Belendiuk GW, Freedman DX (1980) Blood monoamine metabolism in Huntington’s disease. Arch Gen Psychiatry 37:325–332PubMedCrossRefGoogle Scholar
  109. 109.
    Weise VK, Kopin IJ (1976) Assay of cathecholamines in human plasma: studies of a single isotope radioenzymatic procedure. Life Sci 19:1673–1685PubMedCrossRefGoogle Scholar
  110. 110.
    Caraceni T, Panerai AE, Paratl EA et al (1977) Altered growth hormone and prolactin responses to dopaminergic stimulation in Huntington’s chorea. J Clin Endocrinol Metabol 44:870–875CrossRefGoogle Scholar
  111. 111.
    Nagatsu T, Udenfriend S (1972) Photometric assay of dopamine-3hydroxylase activity in human blood. Clin Chem 18:980–983PubMedGoogle Scholar
  112. 112.
    McNamee B, Kelvin AS, Turnbull MJ (1971) Urinary excretion of some monoamines and metabolites in Huntington’s chorea. Scott Med J 16:247–249PubMedCrossRefGoogle Scholar
  113. 113.
    Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375PubMedGoogle Scholar
  114. 114.
    Klawans HL (1971) Cerebrospinal fluid homovanillic acid in Huntington’s chorea. J Neurol Sci 13:277–279PubMedCrossRefGoogle Scholar
  115. 115.
    Weiner W, Harrison W, Klawans H (1969) l-Dopa and cerebrospinal fluid homovanillic acid in Parkinsonism. Life Sci 8:971–976PubMedCrossRefGoogle Scholar
  116. 116.
    Curzon G, Gumpert J, Sharpe D (1972) Amine metabolites in the cerebrospinal fluid in Huntington’s chorea. J Neurol Neurosurg Psychiatry 35:514–519PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Curzon G, Godwin-Austen RB, Tomlinson EB, Kantamaneni BD (1970) The cerebrospinal fluid homovanillic acid concentration in patients with Parkinsonism treated with l-dopa. J Neurol Neurosurg Psychiatry 33:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    García Ruiz PJ, Mena MA, Bernardos VS et al (1995) Cerebrospinal fluid homovanillic acid is reduced in untreated Huntingtonʼs disease. Clin Neuropharmacol 18:58–63PubMedCrossRefGoogle Scholar
  119. 119.
    Caraceni T, Calderini G, Consolazione A et al (1977) Biochemical aspects of Huntington’s chorea. J Neurol Neurosurg Psychiatry 40:581–587PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Korf J, van Praag HM, Sebens JB (1971) Effect of intravenously administered probenecid in humans on the levels of 5-hydroxyindoleacetic acid, homovanillic acid and 3-methoxy-4-hydroxy-phenylglycol in cerebrospinal fluid. Biochem Pharmacol 20:659–668PubMedCrossRefGoogle Scholar
  121. 121.
    Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2009) Plasma homovanillic acid and prolactin in Huntington’s disease. Neurochem Res 34:917–922PubMedCrossRefGoogle Scholar
  122. 122.
    Williams CM, Maury S, Kibler RF (1961) Normal excretion of homovanillic acid in the urine of patients with Huntington’s chorea. J Neurochem 6:254–256PubMedGoogle Scholar
  123. 123.
    Pisano JJ, Crout JR, Abraham D (1962) Determination of 3-methoxy-4-hydroxymandelic acid in urine. Clin Chim Acta 7:285–291PubMedCrossRefGoogle Scholar
  124. 124.
    Korf J, Valkenburgh-Sikkema T (1969) Fluorimetric determination of 5-hydroxyindoleacetic acid in human urine and cerebrospinal fluid. Clin Chim Acta 26:301–306PubMedCrossRefGoogle Scholar
  125. 125.
    Kurlan R, Caine E, Rubin A et al (1988) Cerebrospinal fluid correlates of depression in Huntington’s disease. Arch Neurol 45:881–883PubMedCrossRefGoogle Scholar
  126. 126.
    MacFarlane PS, Dalgliesh CE, Dutton RW et al (1956) Endocrine aspects of argentaffinoma, with special reference to the use of urinary 5-hydroxyindoleacetic acid estimations in diagnosis. Scott Med J 1:148–155PubMedCrossRefGoogle Scholar
  127. 127.
    Murphy DL, Wright C, Buchsbaum M et al (1976) Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem Med 16:254–265CrossRefGoogle Scholar
  128. 128.
    Varani K, Abbracchio MP, Cannella M et al (2003) Aberrant A2A receptor function in peripheral blood cells in Huntington’s disease. FASEB J 17:2148–2150PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Maglione V, Giallonardo P, Cannella M et al (2005) Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington’s disease. Am J Med Genet B Neuropsychiatr Genet 139b:101–105PubMedCrossRefGoogle Scholar
  130. 130.
    Maglione V, Cannella M, Martino T et al (2006) The platelet maximum number of A2A-receptor binding sites (Bmax) linearly correlates with age at onset and CAG repeat expansion in Huntington’s disease patients with predominant chorea. Neurosci Lett 393:27–30PubMedCrossRefGoogle Scholar
  131. 131.
    Varani K, Bachoud-Levi AC, Mariotti C et al (2007) Biological abnormalities of peripheral A(2A) receptors in a large representation of polyglutamine disorders and Huntington’s disease stages. Neurobiol Dis 27:36–43PubMedCrossRefGoogle Scholar
  132. 132.
    Oates JA, Marsh E, Sjoerdsma A (1962) Studies on histamine in human urine using a fluorometric method of assay. Clin Chim Acta 7:488–497PubMedCrossRefGoogle Scholar
  133. 133.
    Beutler BA, Noronha AB, Poon MM, Arnason BG (1981) The absence of unique kainic acid-like molecules in urine, serum, and CSF from Huntington’s disease patients. J Neurol Sci 51:355–360PubMedCrossRefGoogle Scholar
  134. 134.
    Reilmann R, Rolf LH, Lange HW (1997) Huntington’s disease: N-methyl-d-aspartate receptor coagonist glycine is increased in platelets. Exp Neurol 144:416–419PubMedCrossRefGoogle Scholar
  135. 135.
    Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770–773PubMedCrossRefGoogle Scholar
  136. 136.
    Manyam NVB, Hare TA, Katz L (1980) Effect of isoniazid on cerebrospinal fluid and plasma GABA levels in Huntington's disease. Life Sci 26:1303–1308PubMedCrossRefGoogle Scholar
  137. 137.
    Tell G, Bohlen P, Schechter PJ, Koch-Weser J et al (1981) Treatment of Huntington disease with γ-acetylenic GABA, an irreversible inhibitor of GABA-transaminase: Increased CSF GABA and homocarnosine without clinical amelioration. Neurology 31:207–207PubMedCrossRefGoogle Scholar
  138. 138.
    Klawans JHL (1970) A pharmacologic analysis of Huntington’s chorea. Eur Neurol 4:148–163PubMedCrossRefGoogle Scholar
  139. 139.
    Borovecki F, Lovrecic L, Zhou J et al (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 102:11023–11028PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Runne H, Kuhn A, Wild EJ et al (2007) Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proc Natl Acad Sci U S A 104:14424–14429PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Anderson AN, Roncaroli F, Hodges A et al (2008) Chromosomal profiles of gene expression in Huntington’s disease. Brain 131:381–388PubMedCrossRefGoogle Scholar
  142. 142.
    Lovrecic L, Kastrin A, Kobal J et al (2009) Gene expression changes in blood as a putative biomarker for Huntington’s disease. Mov Disord 24:2277–2281PubMedCrossRefGoogle Scholar
  143. 143.
    Lovrecic L, Slavkov I, Dzeroski S, Peterlin B (2010) ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2): a new potential biomarker in Huntington’s disease. J Int Med Res 38:1653–1662PubMedCrossRefGoogle Scholar
  144. 144.
    Hu Y, Chopra V, Chopra R et al (2011) Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc Natl Acad Sci U S A 108(41):17141–17146PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Cesca F, Bregant E, Peterlin B et al (2015) Evaluating the SERCA2 and VEGF mRNAs as potential molecular biomarkers of the onset and progression in Huntington’s disease. PLoS One 10:e0125259PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Gaughwin PM, Ciesla M, Lahiri N et al (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237PubMedCrossRefGoogle Scholar
  147. 147.
    Chen CM, Wu YR, Cheng ML et al (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 359:335–340PubMedCrossRefGoogle Scholar
  148. 148.
    Fang Q, Strand A, Law W, Faca VM et al (2008) Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteomics 8:451–466PubMedCrossRefGoogle Scholar
  149. 149.
    Vinther-Jensen T, Simonsen AH, Budtz-Jørgensen E et al (2015) Ubiquitin: a potential cerebrospinal fluid progression marker in Huntington’s disease. Eur J Neurol 22:1378–1384PubMedCrossRefGoogle Scholar
  150. 150.
    Schwarcz R, Tamminga CA, Kurlan R, Shoulson I (1988) Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Ann Neurol 24:580–558PubMedCrossRefGoogle Scholar
  151. 151.
    Heyes MP, Swartz KJ, Markey SP, Beal MF (1991) Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s disease. Neurosci Lett 122:265–269PubMedCrossRefGoogle Scholar
  152. 152.
    Heyes MP, Saito K, Crowley JS et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115:1249–1273PubMedCrossRefGoogle Scholar
  153. 153.
    Heyes MP, Garnett ES, Brown RR (1985) Normal excretion of quinolinic acid in Huntington’s disease. Life Sci 37:1811–1816PubMedCrossRefGoogle Scholar
  154. 154.
    Foster AC, Schwarcz R (1985) Characterization of quinolinic acid phosphoribosyltransferase in human blood and observations in Huntington’s disease. J Neurochem 45:199–205PubMedCrossRefGoogle Scholar
  155. 155.
    Beal MF, Matson WR, Swartz KJ et al (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339PubMedCrossRefGoogle Scholar
  156. 156.
    Denckla WD, Dewey HK (1967) The determination of tryptophan in plasma, liver, and urine. J Lab Clin Med 69:160–169PubMedGoogle Scholar
  157. 157.
    Jauch D, Urbanska EM, Guidetti P et al (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci 130:39–47PubMedCrossRefGoogle Scholar
  158. 158.
    Reynolds GP, Pearson SJ (1989) Increased brain 3-hydroxykynurenine in Huntington’s disease. Lancet 2:979–980PubMedCrossRefGoogle Scholar
  159. 159.
    Pearson SJ, Reynolds GP (1992) Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci Lett 144:199–201PubMedCrossRefGoogle Scholar
  160. 160.
    Guidetti P, Reddy PH, Tagle DA, Schwarcz R (2000) Early kynurenergic impairment in Huntington’s disease and in a transgenic animal model. Neurosci Lett 283:233–235PubMedCrossRefGoogle Scholar
  161. 161.
    Fukui S, Schwarcz R, Rapoport SI et al (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017PubMedCrossRefGoogle Scholar
  162. 162.
    Jauch DA, Sethy VH, Weick BG et al (1993) Intravenous administration of l-kynurenine to rhesus monkeys: effect on quinolinate and kynurenate levels in serum and cerebrospinal fluid. Neuropharmacology 32:467–472PubMedCrossRefGoogle Scholar
  163. 163.
    Vecsei L, Miller J, MacGarvey U, Beal F (1992) Effects of kynurenine and probenecid on plasma and brain tissue concentrations of kynurenic acid. Neurodegeneration 1:17–26Google Scholar
  164. 164.
    Montine TJ, Markesbery WR, Morrow JD, Roberts LJ (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann Neurol 44:410–413PubMedCrossRefGoogle Scholar
  165. 165.
    Barodia SK, Creed RB, Goldberg MS (2016) Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull 133:51–59PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Bozzo F, Mirra A, Carri MT (2017) Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett 636:3–8PubMedCrossRefGoogle Scholar
  167. 167.
    Montine TJ, Beal MF, Robertson D et al (1999) Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52:1104PubMedCrossRefGoogle Scholar
  168. 168.
    Montine TJ, Shinobu L, Montine K et al (2000) No difference in plasma or urinary F2-isoprostanes among patients with Huntington’s disease or Alzheimer’s disease and controls. Ann Neurol 48:950PubMedCrossRefGoogle Scholar
  169. 169.
    Hersch SM, Gevorkian S, Marder K et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 66:250–252PubMedCrossRefGoogle Scholar
  170. 170.
    Bogdanov M, Brown RH, Matson W et al (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658PubMedCrossRefGoogle Scholar
  171. 171.
    Biglan KM, Dorsey ER, Evans R et al (2012) Plasma 8-hydroxy-2′-deoxyguanosine levels in Huntington disease and healthy controls treated with coenzyme Q10. J Huntingtons Dis 1:65–69PubMedPubMedCentralGoogle Scholar
  172. 172.
    Long JD, Matson WR, Juhl AR et al (2012) 8OHdG as a marker for Huntington disease progression. Neurobiol Dis 46:625–634PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Borowsky B, Warner J, Leavitt BR et al (2013) 8OHdG is not a biomarker for Huntington disease state or progression. Neurology 80:1934–1941PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Ciancarelli I, De Amicis D, Di Massimo C et al (2014) Peripheral biomarkers of oxidative stress and their limited potential in evaluation of clinical features of Huntington’s patients. Biomarkers 19:452–456PubMedCrossRefGoogle Scholar
  175. 175.
    Rosas HD, Doros G, Gevorkian S et al (2014) PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82:850–857PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Ciancarelli I, De Amicis D, Di Massimo C et al (2015) Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington’s disease. Funct Neurol 30:47–52PubMedPubMedCentralGoogle Scholar
  177. 177.
    Pena-Sanchez M, Riveron-Forment G, Zaldivar-Vaillant T et al (2015) Association of status redox with demographic, clinical and imaging parameters in patients with Huntington’s disease. Clin Biochem 48:1258–1263PubMedCrossRefGoogle Scholar
  178. 178.
    Olsson MG, Davidsson S, Muhammad ZD et al (2012) Increased levels of hemoglobin and alpha1-microglobulin in Huntington’s disease. Front Biosci (Elite Ed) 4:950–957Google Scholar
  179. 179.
    Witko-Sarsat V, Friedlander M, Nguyen Khoa T et al (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–2532PubMedGoogle Scholar
  180. 180.
    Klepac N, Relja M, Klepac R et al (2007) Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. J Neurol 254:1676–1683PubMedCrossRefGoogle Scholar
  181. 181.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474PubMedCrossRefGoogle Scholar
  182. 182.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  183. 183.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169PubMedGoogle Scholar
  184. 184.
    Carlberg I, Mannervik B (1986) Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer. J Biol Chem 261:1629–1635PubMedGoogle Scholar
  185. 185.
    Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205PubMedCrossRefGoogle Scholar
  186. 186.
    Carrizzo A, Di Pardo A, Maglione V et al (2014) Nitric oxide dysregulation in platelets from patients with advanced Huntington disease. PLoS One 9:e89745PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Radomski M, Moncada S (1983) An improved method for washing of human platelets with prostacyclin. Thromb Res 30:383–389PubMedCrossRefGoogle Scholar
  188. 188.
    Banegas I, Prieto I, Vives F et al (2004) Plasma aminopeptidase activities in rats after left and right intrastriatal administration of 6-hydroxydopamine. Neuroendocrinology 80:219–224PubMedCrossRefGoogle Scholar
  189. 189.
    Reilmann R, Rolf LH, Lange HW (1994) Huntington’s disease: the neuroexcitotoxin aspartate is increased in platelets and decreased in plasma. J Neurol Sci 127:48–53PubMedCrossRefGoogle Scholar
  190. 190.
    Kim JS, Kornhuber HH, Holzmuller B et al (1980) Reduction of cerebrospinal fluid glutamic acid in Huntington’s chorea and in schizophrenic patients. Arch Psychiatr Nervenkr 228:7–10PubMedCrossRefGoogle Scholar
  191. 191.
    Graham LT Jr, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497PubMedCrossRefGoogle Scholar
  192. 192.
    Uhlhaas S, Lange H (1988) Striatal deficiency of l-pyroglutamic acid in Huntington’s disease is accompanied by increased plasma levels. Brain Res 457:196–199PubMedCrossRefGoogle Scholar
  193. 193.
    Huntington Study Group T-HDI (2008) Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Arch Neurol 65:1582–1589Google Scholar
  194. 194.
    Puri BK, Leavitt BR, Hayden MR et al (2005) Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology 65:286–292PubMedCrossRefGoogle Scholar
  195. 195.
    Ferreira JJ, Rosser A, Craufurd D et al (2015) Ethyl-eicosapentaenoic acid treatment in Huntington’s disease: a placebo-controlled clinical trial. Mov Disord 30:1426–1429PubMedCrossRefGoogle Scholar
  196. 196.
    Hyson HC, Kieburtz K, Shoulson I et al (2010) Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov Disord 25:1924–1928PubMedCrossRefGoogle Scholar
  197. 197.
    McGarry A, McDermott M, Kieburtz K et al (2017) A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88:152–159PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57:397–404Google Scholar
  199. 199.
    Li SH, Schilling G, Young WS et al (1993) Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11:985–993PubMedCrossRefGoogle Scholar
  200. 200.
    van der Burg JM, Bjorkqvist M, Brundin P (2009) Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol 8:765–774PubMedCrossRefGoogle Scholar
  201. 201.
    Sathasivam K, Hobbs C, Turmaine M et al (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813–822PubMedCrossRefGoogle Scholar
  202. 202.
    Keogh HJ, Johnson RH, Nanda RN, Sulaiman WR (1976) Altered growth hormone release in Huntington’s chorea. J Neurol Neurosurg Psychiatry 39:244–248PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Phillipson OT, Bird ED (1976) Plasma growth hormone concentrations in Huntington’s chorea. Clin Sci Mol Med 50:551–554PubMedGoogle Scholar
  204. 204.
    Hartog M, Gaafar MA, Meisser B, Fraser R (1964) Immunoassay of serum growth hormone in acromegalic patients. Br Med J 2:1229–1232PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Chalmers RJ, Johnson RH, Keogh HJ, Nanda RN (1978) Growth hormone and prolactin response to bromocriptine in patients with Huntington’s chorea. J Neurol Neurosurg Psychiatry 41:135–139PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Muller EE, Parati EA, Panerai AE et al (1979) Growth hormone hyperresponsiveness to dopaminergic stimulation in Huntington’s chorea. Neuroendocrinology 28:313–319PubMedCrossRefGoogle Scholar
  207. 207.
    Murri L, Iudice A, Muratorio A et al (1980) Spontaneous nocturnal plasma prolactin and growth hormone secretion in patients with Parkinson’s disease and Huntington’s chorea. Eur Neurol 19:198–206PubMedCrossRefGoogle Scholar
  208. 208.
    Lavin PJ, Bone I, Sheridan P (1981) Studies of hypothalamic function in Huntington’s chorea. J Neurol Neurosurg Psychiatry 44:414–418PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Durso R, Tamminga CA, Ruggeri S et al (1983) Twenty-four hour plasma levels of growth hormone and prolactin in Huntington’s disease. J Neurol Neurosurg Psychiatry 46:1134–1137PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Durso R, Tamminga CA, Denaro A et al (1983) Plasma growth hormone and prolactin response to dopaminergic GABAmimetic and cholinergic stimulation in Huntington’s disease. Neurology 33:1229–1232PubMedCrossRefGoogle Scholar
  211. 211.
    Popovic V, Svetel M, Djurovic M et al (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington’s disease. Eur J Endocrinol 151:451–455PubMedCrossRefGoogle Scholar
  212. 212.
    Saleh N, Moutereau S, Durr A et al (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS One 4:e4962PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Aziz NA, Pijl H, Frolich M et al (2010) Growth hormone and ghrelin secretion are associated with clinical severity in Huntington’s disease. Eur J Neurol 17:280–288PubMedCrossRefGoogle Scholar
  214. 214.
    Saleh N, Moutereau S, Azulay JP et al (2010) High insulinlike growth factor I is associated with cognitive decline in Huntington disease. Neurology 75:57–63PubMedCrossRefGoogle Scholar
  215. 215.
    Salvatore E, Rinaldi C, Tucci T et al (2011) Growth hormone response to arginine test differentiates between two subgroups of Huntington’s disease patients. J Neurol Neurosurg Psychiatry 82:543–547PubMedCrossRefGoogle Scholar
  216. 216.
    Russo CV, Salvatore E, Sacca F et al (2013) Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington’s disease patients. J Huntingtons Dis 2:501–507PubMedGoogle Scholar
  217. 217.
    Hayden MR, Vinik AI, Paul M, Beighton P (1977) Impaired prolactin release in Huntington’s chorea. Evidence for dopaminergic excess. Lancet 2:423–426PubMedCrossRefGoogle Scholar
  218. 218.
    Caine E, Kartzinel R, Ebert M, Carter AC (1978) Neuroendocrine function in Huntington’s disease: dopaminergic regulation of prolactin release. Life Sci 22:911–918PubMedCrossRefGoogle Scholar
  219. 219.
    Kremer HP, Roos RA, Frolich M et al (1989) Endocrine functions in Huntington’s disease. A two-and-a-half years follow-up study. J Neurol Sci 90:335–344PubMedCrossRefGoogle Scholar
  220. 220.
    Aziz NA, Pijl H, Frolich M, Roelfsema F, Roos RA (2010) Altered thyrotropic and lactotropic axes regulation in Huntington’s disease. Clin Endocrinol 73:540–545Google Scholar
  221. 221.
    Heuser IJ, Chase TN, Mouradian MM (1991) The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol Psychiatry 30:943–952PubMedCrossRefGoogle Scholar
  222. 222.
    Gold PW, Calabrese JR, Kling MA et al (1986) Abnormal ACTH and cortisol responses to ovine corticotropin releasing factor in patients with primary affective disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 10:57–65CrossRefGoogle Scholar
  223. 223.
    Bruyn GW, de Yong FH, van der Molen JH (1972) Huntington’s chorea and the adrenal. Br Med J 1:506PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Leblhuber F, Peichl M, Neubauer C et al (1995) Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J Neurol Sci 132:76–79PubMedCrossRefGoogle Scholar
  225. 225.
    Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2007) Plasma testosterone, dehydroepiandrosterone sulfate, and cortisol in female patients with Huntington’s disease. Neuro Endocrinol Lett 28:199–203PubMedGoogle Scholar
  226. 226.
    Aziz NA, Pijl H, Frolich M et al (2009) Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metabol 94:1223–1228CrossRefGoogle Scholar
  227. 227.
    Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2005) Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann Neurol 57:520–525PubMedCrossRefGoogle Scholar
  228. 228.
    Aziz NA, Pijl H, Frolich M et al (2010) Leptin secretion rate increases with higher CAG repeat number in Huntington’s disease patients. Clin Endocrinol 73:206–211CrossRefGoogle Scholar
  229. 229.
    Gaus SE, Lin L, Mignot E (2005) CSF hypocretin levels are normal in Huntington’s disease patients. Sleep 28:1607–1608PubMedCrossRefGoogle Scholar
  230. 230.
    Björkqvist M, Petersén Å, Nielsen J et al (2006) Cerebrospinal fluid levels of orexin-A are not a clinically useful biomarker for Huntington disease. Clin Genet 70:78–79PubMedCrossRefGoogle Scholar
  231. 231.
    Björkqvist M, Leavitt BR, Nielsen JE et al (2007) Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov Disord 22:1952–1954PubMedCrossRefGoogle Scholar
  232. 232.
    Ciammola A, Sassone J, Cannella M et al (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet 144B:574–577PubMedCrossRefGoogle Scholar
  233. 233.
    Squitieri F, Cannella M, Simonelli M et al (2009) Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neurosci Ther 15:1–11PubMedCrossRefGoogle Scholar
  234. 234.
    Zuccato C, Marullo M, Vitali B et al (2011) Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 6:e22966PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Lorigados L, Soderstrom S, Ebendal T (1992) Two-site enzyme immunoassay for beta NGF applied to human patient sera. J Neurosci Res 32:329–339PubMedCrossRefGoogle Scholar
  236. 236.
    Battista N, Bari M, Tarditi A et al (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiol Dis 27:108–116PubMedCrossRefGoogle Scholar
  237. 237.
    Wood NI, Goodman AO, van der Burg JM et al (2008) Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Res Bull 76:70–79PubMedCrossRefGoogle Scholar
  238. 238.
    Lalic NM, Maric J, Svetel M et al (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480PubMedCrossRefGoogle Scholar
  239. 239.
    Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23:55–63PubMedCrossRefGoogle Scholar
  240. 240.
    Kunst A, Draeger B, Ziegenhorn J (1974) In: Bergmayer HU, Bergmayer J, Grassl M (eds) Methods of enzymatic analysis, vol 6. Verlag Chemie, Weinheim, pp 163–172Google Scholar
  241. 241.
    Fraser S, Cowen P, Franklin M et al (1983) Direct radioimmunoassay for melatonin in plasma. Clin Chem 29:396–397PubMedGoogle Scholar
  242. 242.
    Aziz NA, Pijl H, Frolich M et al (2009) Delayed onset of the diurnal melatonin rise in patients with Huntington’s disease. J Neurol 256:1961–1965PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Kalliolia E, Silajdzic E, Nambron R et al (2014) Plasma melatonin is reduced in Huntington’s disease. Mov Disord 29:1511–1515PubMedCrossRefGoogle Scholar
  244. 244.
    Aziz NA, Onkenhout W, Kerstens HJ, Roos RA (2015) Cystathionine levels in patients with Huntington disease. PLoS Curr 7.
  245. 245.
    Merens W, Booij L, Markus R et al (2005) The effects of a diet enriched with alpha-lactalbumin on mood and cortisol response in unmedicated recovered depressed subjects and controls. Br J Nutr 94:415–422PubMedCrossRefGoogle Scholar
  246. 246.
    Forrest AD (1957) Some observations on Huntington’s chorea. J Ment Sci 103:507–513PubMedCrossRefGoogle Scholar
  247. 247.
    Bruyn GW, Mink CJ, Calje JF (1965) Biochemical studies in Huntington’s chorea: erythrocyte magnesium. Neurology 15:455–461PubMedCrossRefGoogle Scholar
  248. 248.
    Bonilla E, Estevez J, Suarez H et al (1991) Serum ferritin deficiency in Huntington’s disease patients. Neurosci Lett 129:22–24PubMedCrossRefGoogle Scholar
  249. 249.
    Morrison PJ, Nevin NC (1994) Serum iron, total iron binding capacity and ferritin in early Huntington disease patients. Ir J Med Sci 163:236–237PubMedCrossRefGoogle Scholar
  250. 250.
    Leoni V, Mariotti C, Tabrizi SJ et al (2008) Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 131:2851–2859PubMedCrossRefGoogle Scholar
  251. 251.
    Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2008) Low plasma total cholesterol in patients with Huntington’s disease and first-degree relatives. Mol Genet Metab 93:341–346PubMedCrossRefGoogle Scholar
  252. 252.
    Leoni V, Mariotti C, Nanetti L et al (2011) Whole body cholesterol metabolism is impaired in Huntington’s disease. Neurosci Lett 494:245–249PubMedCrossRefGoogle Scholar
  253. 253.
    Laurell S, Tibbling G (1967) Colorimetric micro-determination of free fatty acids in plasma. Clin Chim Acta 16:57–62PubMedCrossRefGoogle Scholar
  254. 254.
    Kim J, Amante DJ, Moody JP et al (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta 1802:673–681PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967PubMedCrossRefGoogle Scholar
  256. 256.
    Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264PubMedCrossRefGoogle Scholar
  257. 257.
    Lazar AS, Panin F, Goodman AO et al (2015) Sleep deficits but no metabolic deficits in premanifest Huntington’s disease. Ann Neurol 78:630–648PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    US FDA (2001) Guidance for industry: bioanalytical method validation. Rockville, MD, USAGoogle Scholar
  259. 259.
    European Medicines Agency (2011) Guideline on bioanalytical method validation. London, UKGoogle Scholar
  260. 260.
    University College L (2017) HDClarity: a multi-site cerebrospinal fluid collection initiative to facilitate therapeutic development for Huntington’s disease.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Filipe B. Rodrigues
    • 1
  • Lauren M. Byrne
    • 1
  • Edward J. Wild
    • 1
    Email author
  1. 1.Huntington’s Disease Centre, Department of Neurodegenerative Disease, Institute of NeurologyUniversity College LondonLondonUK

Personalised recommendations