Skip to main content

Magnetic Resonance Imaging in Huntington’s Disease

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Magnetic resonance imaging (MRI) is a noninvasive technique used routinely to image the body in both clinical and research settings. Through the manipulation of radio waves and static field gradients, MRI uses the principle of nuclear magnetic resonance to produce images with high spatial resolution, appropriate for the investigation of brain structure and function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  2. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14:1238–1243

    Article  CAS  PubMed  Google Scholar 

  3. Morey RA, Petty CM, Xu Y et al (2009) A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45:855–866

    Article  PubMed  Google Scholar 

  4. Aylward EH, Codori AM, Rosenblatt A et al (2000) Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord 15:552–560

    Article  CAS  PubMed  Google Scholar 

  5. Aylward EH, Nopoulos PC, Ross CA et al (2011) Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82:405–410

    Article  PubMed  Google Scholar 

  6. Georgiou-Karistianis N, Scahill R et al (2013) Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev 37:480–490

    Article  PubMed  Google Scholar 

  7. Paulsen JS, Nopoulos PC, Aylward E et al (2010) Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res Bull 82:201–207

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tabrizi SJ, Reilmann R, Roos RA et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53

    Article  PubMed  Google Scholar 

  10. Tabrizi SJ, Scahill RI, Durr A et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42

    Article  PubMed  Google Scholar 

  11. Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 11:42–53

    Article  Google Scholar 

  12. Rosas HD, Reuter M, Doros G et al (2011) A tale of two factors: what determines the rate of progression in Huntington’s disease? A longitudinal MRI study. Mov Disord 26:1691–1697

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnson EB, Rees EM, Labuschagne I et al (2015) The impact of occipital lobe cortical thickness on cognitive task performance: an investigation in Huntington’s disease. Neuropsychologia 79:138–146

    Article  PubMed  Google Scholar 

  14. Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex 44:936–952. https://doi.org/10.1016/j.cortex.2008.05.002

    Article  PubMed  Google Scholar 

  15. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  16. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  17. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  19. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140

    Article  PubMed  Google Scholar 

  21. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125

    Article  PubMed  Google Scholar 

  22. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF (2008) Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev 58(1):209–225

    Article  CAS  PubMed  Google Scholar 

  24. Della Nave R, Ginestroni A, Tessa C et al (2010) Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. Am J Neuroradiol 31:1675–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Douaud G, Behrens TE, Poupon C et al (2009) In vivo evidence for the selective subcortical degeneration in Huntington’s disease. Neuroimage 46:958–966

    Article  PubMed  Google Scholar 

  26. Dumas EM, van den Bogaard SJ et al (2012) Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 33:203–212

    Article  PubMed  Google Scholar 

  27. Novak MJU, Seunarine KK, Gibbard CR et al (2014) White matter integrity in premanifest and early Huntington’s disease is related to caudate loss and disease progression. Cortex 52(1):98–112

    Article  PubMed  Google Scholar 

  28. Poudel GR, Stout JC, Dominguez DJ et al (2015) Longitudinal change in white matter microstructure in Huntington’s disease: the IMAGE-HD study. Neurobiol Dis 74:406–412

    Article  PubMed  Google Scholar 

  29. Poudel GR, Stout JC, Dominguez DJ et al (2014) White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiol Dis 65:180–187

    Article  PubMed  Google Scholar 

  30. Gregory S, Cole JH, Farmer RE et al (2015) Longitudinal diffusion tensor imaging shows progressive changes in white matter in Huntington’s disease. J Huntingtons Dis 4:333–346

    Article  PubMed  Google Scholar 

  31. Klöppel S, Draganski B, Golding CV et al (2008) White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain 131:196–204

    Article  PubMed  Google Scholar 

  32. McColgan P, Seunarine KK, Razi A et al (2015) Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease. Brain 138:3327–3344

    Article  PubMed  PubMed Central  Google Scholar 

  33. Orth M, Gregory S, Scahill RI et al (2016) Natural variation in sensory-motor white matter organization influences manifestations of Huntington’s disease. Hum Brain Mapp 37:4615–4628

    Article  PubMed  PubMed Central  Google Scholar 

  34. OF O, Caeyenberghs K, Hosseini H et al (2015) Dynamics of the connectome in Huntington’s disease: a longitudinal diffusion MRI study. Neuroimage Clin 9:32–43

    Article  Google Scholar 

  35. OF O, Leemans A, Reijntjes RH et al (2015) Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up. Hum Brain Mapp 36:2061–2074

    Article  Google Scholar 

  36. Gregory S, Scahill RI, Seunarine KK et al (2015) Neuropsychiatry and white matter microstructure in Huntington’s disease. J Huntingtons Dis 4:239–249

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bandettini PA, Wong EC, Hinks RS et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  PubMed  Google Scholar 

  40. Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531

    Article  PubMed  Google Scholar 

  41. Kim J, Zhu W, Chang L et al (2007) Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Hum Brain Mapp 28:85–93

    Article  PubMed  Google Scholar 

  42. Seth AK, Barrett AB, Barnett L (2015) Granger causality analysis in neuroscience and neuroimaging. J Neurosci 35:3293–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  44. Georgiou-Karistianis N, Poudel GR, Dominguez DJ et al (2013) Functional and connectivity changes during working memory in Huntington’s disease: 18 month longitudinal data from the IMAGE-HD study. Brain Cogn 83:80–89

    Article  PubMed  Google Scholar 

  45. Poudel GR, Stout JC, Dominguez DJ et al (2015) Functional changes during working memory in Huntington’s disease: 30-month longitudinal data from the IMAGE-HD study. Brain Struct Funct 220:501–512

    Article  PubMed  Google Scholar 

  46. Wolf RC, Kloppel S (2013) Clinical significance of frontal cortex abnormalities in Huntington’s disease. Exp Neurol 247:39–44

    Article  PubMed  Google Scholar 

  47. Wolf RC, Sambataro F, Vasic N et al (2014) Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease. Psychol Med 44:3341–3356

    Article  CAS  PubMed  Google Scholar 

  48. Wolf RC, Sambataro F, Vasic N et al (2008) Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Exp Neurol 213:137–144

    Article  CAS  PubMed  Google Scholar 

  49. Wolf RC, Sambataro F, Vasic N et al (2014) Longitudinal task-negative network analyses in preclinical Huntington’s disease. Eur Arch Psychiatry Clin Neurosci 264:493–505

    Article  PubMed  Google Scholar 

  50. Kloppel S, Draganski B, Siebner HR et al (2009) Functional compensation of motor function in pre-symptomatic Huntington’s disease. Brain 132:1624–1632

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gray MA, Egan GF, Ando A et al (2013) Prefrontal activity in Huntington’s disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study. Exp Neurol 239:218–228

    Article  CAS  PubMed  Google Scholar 

  52. Malejko K, Weydt P, Sussmuth SD et al (2014) Prodromal Huntington disease as a model for functional compensation of early neurodegeneration. PLoS One 9:e114569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kloppel S, Gregory S (2015) Compensation in preclinical Huntington’s disease: evidence from the Track-On HD study. EBioMedicine. https://doi.org/10.1016/j.ebiom.2015.08.002

  54. Harrington DL, Rubinov M, Durgerian S et al (2015) Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain 138:2332–2346

    Article  PubMed  PubMed Central  Google Scholar 

  55. Werner CJ, Dogan I, Sass C, Mirzazade S, Schiefer J, Shah NJ, Schulz JB, Reetz K (2014) Altered resting-state connectivity in Huntington’s disease. Hum Brain Mapp 35:2582–2593

    Article  PubMed  Google Scholar 

  56. OF O, van den Berg-Huysmans AA et al (2015) Longitudinal resting state fMRI analysis in healthy controls and premanifest Huntington’s disease gene carriers: a three-year follow-up study. Hum Brain Mapp 36:110–119

    Article  Google Scholar 

  57. Mumford JA (2012) A power calculation guide for fMRI studies. Soc Cogn Affect Neurosci 7:738–742

    Article  PubMed  PubMed Central  Google Scholar 

  58. Button KS, Ioannidis JP, Mokrysz C et al (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376

    Article  CAS  PubMed  Google Scholar 

  59. Pernet C, Poline JB (2015) Improving functional magnetic resonance imaging reproducibility. Gigascience 4:15. https://doi.org/10.1186/s13742-015-0055-8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mansfield P (1984) Real-time echo-planar imaging by NMR. Br Med Bull 40:187–190

    Article  CAS  PubMed  Google Scholar 

  61. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  PubMed  Google Scholar 

  62. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  63. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  65. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  PubMed  Google Scholar 

  66. Andersson JL, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078

    Article  PubMed  Google Scholar 

  67. Lori NF, Akbudak E, Shimony JS et al (2002) Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed 15:494–515

    Article  CAS  PubMed  Google Scholar 

  68. Friston KJ, Worsley KJ, Frackowiak RS et al (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210–220

    Article  CAS  PubMed  Google Scholar 

  69. Worsley KJ, Marrett S, Neelin P et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73

    Article  CAS  PubMed  Google Scholar 

  70. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98

    Article  PubMed  Google Scholar 

  71. Khalsa S, Mayhew SD, Chechlacz M et al (2014) The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships. Neuroimage 102:118–127

    Article  PubMed  Google Scholar 

  72. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  73. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678. https://doi.org/10.1073/pnas.0504136102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gotts SJ, Saad ZS, Jo HJ et al (2013) The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders. Front Hum Neurosci 7:356. https://doi.org/10.3389/fnhum.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  76. Qing Z, Dong Z, Li S, Zang Y, Liu D (2015) Global signal regression has complex effects on regional homogeneity of resting state fMRI signal. Magn Reson Imaging 33:1306–1313

    Article  PubMed  Google Scholar 

  77. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152

    Article  PubMed  Google Scholar 

  79. Filippini N, MacIntosh BJ, Hough MG et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 106:7209–7214

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eileanoir Johnson for her suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Gregory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gregory, S., Scahill, R.I., Rees, G., Tabrizi, S. (2018). Magnetic Resonance Imaging in Huntington’s Disease. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics