Advertisement

In Vivo Multidimensional Brain Imaging in Huntington’s Disease Animal Models

  • Julien Flament
  • Philippe HantrayeEmail author
  • Julien Valette
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)

Abstract

Huntington’s disease (HD) is a genetic neurodegenerative disorder caused by an abnormal expansion of a CAG repeat located in the gene encoding for huntingtin protein. This mutation induces the expression of a polyglutamine stretch in the mutated protein resulting in the modification of various biological properties of the wild-type protein and the progressive appearance of motor, cognitive, and psychiatric disorders that are typically associated to this condition. Although the exact neuropathological mechanisms of degeneration are still not fully understood, HD pathology is characterized by severe neuronal losses in various brain regions including the basal ganglia and many cortical areas. Early signs of astrogliosis may precede actual neuronal degeneration. Early metabolic impairment at least in part associated with mitochondrial complex II deficiency may play a key role in huntingtin-induced mechanisms of neurodegeneration. Clinical trials are actively prepared including various gene-silencing approaches aiming at decreasing mutated huntingtin production. However, with the lack of a specific imaging biomarker capable of visualizing mutated huntingtin or huntingtin aggregates, there is a need for surrogate markers of huntingtin neurodegeneration. MRI and caudate nucleus atrophy is one of the most sensitive imaging biomarkers of HD. As such it can be used as a means to study disease progression and potential halting of the neurodegenerative process by therapeutic intervention, but this marker relies on actual neuronal loss which is a somewhat a late event in the pathology. As a means to develop, characterize and evaluate new, potentially earlier biomarkers of HD pathology we have recently embarked on a series of NMR developments looking for brain imaging techniques that allow for noninvasive longitudinal evaluation/characterization of functional alterations in animal models of HD. This chapter describes an assemblage of innovative NMR methods that have proved useful in detecting pathological cell dysfunctions in various preclinical models of HD.

Keywords

Preclinical imaging In vivo imaging Magnetic resonance spectroscopy GluCEST imaging Diffusion spectroscopy Longitudinal monitoring 

Notes

Acknowledgments

The 11.7 T MRI scanner was funded by a grant from NeurATRIS: A Translational Research Infrastructure for Biotherapies in Neurosciences (“Investissement d’Avenir,” ANR-11-INBS-0011). J.F. and J.V. are recipients of a grant from L’Agence Nationale de la Recherche (“HDeNERGY” project, ANR-14-CE15-0007-01), and J.V. was supported by the European Research Council (“INCELL” project, ERC grant 336331).

References

  1. 1.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  2. 2.
    Tabrizi SJ, Scahill RI, Durr A et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42CrossRefPubMedGoogle Scholar
  3. 3.
    Tabrizi SJ, Reilmann R, Roos RA et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53CrossRefPubMedGoogle Scholar
  4. 4.
    Sturrock A, Laule C, Decolongon J et al (2010) Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 75:1702–1710CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brennan WA Jr, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44:1948–1950CrossRefPubMedGoogle Scholar
  6. 6.
    Rothman DL, De Feyter HM, de Graaf RA et al (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24:943–957CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rodrigues TB, Valette J, Bouzier-Sore AK (2013) (13)C NMR spectroscopy applications to brain energy metabolism. Front Neuroenerg 5:9.  https://doi.org/10.3389/fnene.2013.00009 CrossRefGoogle Scholar
  8. 8.
    Valette J, Tiret B, Boumezbeur F (2016) Experimental strategies for in vivo13C NMR spectroscopy. Anal Biochem.  https://doi.org/10.1016/j.ab.2016.08.003
  9. 9.
    Zhu XH, Zhang N, Zhang Y et al (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18:83–103CrossRefPubMedGoogle Scholar
  10. 10.
    Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51:723–733CrossRefPubMedGoogle Scholar
  11. 11.
    Boumezbeur F, Besret L, Valette J et al (2004) NMR measurement of brain oxidative metabolism in monkeys using 13C-labeled glucose without a 13C radiofrequency channel. Magn Reson Med 52:33–40CrossRefPubMedGoogle Scholar
  12. 12.
    Brouillet E, Conde F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468CrossRefPubMedGoogle Scholar
  13. 13.
    Boumezbeur F, Besret L, Valette J et al (2008) NMR measurement of VTCA correlates with enzymatic activity along the TCA cycle as measured by histochemistry in the primate brain. In: Proceedings of the international society of magnetic resonance in medicine, Toronto, 2008, p 784Google Scholar
  14. 14.
    Najac C, Tiret B, Flament J et al (2015) CMRO2 quantification by direct 17O MRI at 7 T in the macaque brain: assessment of energy metabolism impairment in vivo. In: Proceedings of the international society of magnetic resonance in medicine, Toronto, 2015, p 4615Google Scholar
  15. 15.
    Lou S, Lepak VC, Eberly LE et al (2016) Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress. Hum Mol Genet 25:2813–2826PubMedPubMedCentralGoogle Scholar
  16. 16.
    Petroff OA, Prichard JW (1983) Cerebral pH by NMR. Lancet 2:105–106CrossRefPubMedGoogle Scholar
  17. 17.
    Brown TR, Ugurbil K, Shulman RG (1977) 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escherichia coli cells. Proc Natl Acad Sci U S A 74:5551–5553CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chaumeil MM, Valette J, Guillermier M et al (2009) Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating 31P MRS for measuring brain ATP synthesis. Proc Natl Acad Sci U S A 106:3988–3993CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhu XH, Du F, Zhang N et al (2009) Advanced in vivo heteronuclear MRS approaches for studying brain bioenergetics driven by mitochondria. Methods Mol Biol 489:317–357CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tiret B, Brouillet E, Valette J (2016) Evidence for a “metabolically inactive” inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T. J Cereb Blood Flow Metab 36:1513–1518CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tkac I, Henry PG, Zacharoff L et al (2012) Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease. J Cereb Blood Flow Metab 32:1977–1988CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tiret B, Carrillo-de Sauvage MA, Nguyen HP et al (2016) Remodeling of energy metabolism revealed by 31P magnetization transfer in a transgenic rat model of Huntington’s disease. In: Proceedings of the international society of magnetic resonance in medicine, Singapore, 2016, p 20Google Scholar
  23. 23.
    Chaumeil MM, Valette J, Baligand C et al (2012) pH as a biomarker of neurodegeneration in Huntington’s disease: a translational rodent-human MRS study. J Cereb Blood Flow Metab 32:771–779CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jenkins BG, Rosas HD, Chen YC et al (1998) 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 50:1357–1365CrossRefPubMedGoogle Scholar
  25. 25.
    Zacharoff L, Tkac I, Song Q et al (2012) Cortical metabolites as biomarkers in the R6/2 model of Huntington’s disease. J Cereb Blood Flow Metab 32:502–514CrossRefPubMedGoogle Scholar
  26. 26.
    Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87CrossRefPubMedGoogle Scholar
  27. 27.
    Wolff S, Balaban R (1990) NMR imaging of labile proton exchange. J Magn Reson 86:164–169Google Scholar
  28. 28.
    Cai K, Haris M, Singh A et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cai K, Singh A, Roalf DR et al (2013) Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR Biomed 26:1278–1284CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kogan F, Singh A, Debrosse C et al (2013) Imaging of glutamate in the spinal cord using GluCEST. Neuroimage 77:262–267CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Haris M, Nath K, Cai K et al (2013) Imaging of glutamate neurotransmitter alterations in Alzheimer’s disease. NMR Biomed 26:386–391CrossRefPubMedGoogle Scholar
  32. 32.
    Crescenzi R, DeBrosse C, Nanga RP et al (2014) In vivo measurement of glutamate loss is associated with synapse loss in a mouse model of tauopathy. Neuroimage 101:185–192CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Davis KA, Nanga RP, Das S et al (2015) Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 7:309ra161CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Carrillo-de Sauvage MA, Flament J, Bramoulle Y et al (2015) The neuroprotective agent CNTF decreases neuronal metabolites in the rat striatum: an in vivo multimodal magnetic resonance imaging study. J Cereb Blood Flow Metab 35:917–921CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pepin J, Francelle L, Carrillo-de Sauvage MA et al (2016) In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. Neuroimage 139:53–64CrossRefPubMedGoogle Scholar
  36. 36.
    Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Alexander DC, Hubbard PL, Hall MG et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52:1374–1389CrossRefPubMedGoogle Scholar
  38. 38.
    Nicolay K, Braun KP, Graaf RA et al (2001) Diffusion NMR spectroscopy. NMR Biomed 14:94–111CrossRefPubMedGoogle Scholar
  39. 39.
    Cao P, Wu EX (2017) In vivo diffusion MRS investigation of non-water molecules in biological tissues. NMR Biomed 30.  https://doi.org/10.1002/nbm.3481
  40. 40.
    Ronen I, Valette J (2015) Diffusion-weighted magnetic resonance spectroscopy. eMagRes 4:733–750.  https://doi.org/10.1002/9780470034590.emrstm1471 CrossRefGoogle Scholar
  41. 41.
    Marchadour C, Brouillet E, Hantraye P et al (2012) Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 32:2153–2160CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ligneul C, Valette J (2017) Probing metabolite diffusion at ultra-short time scales in the mouse brain using optimized oscillating gradients and “short”-echo-time diffusion-weighted MRS. NMR Biomed 30.  https://doi.org/10.1002/nbm.3671
  43. 43.
    Ligneul C, Palombo M, Valette J (2016) Metabolite diffusion up to very high b in the mouse brain in vivo: revisiting the potential correlation between relaxation and diffusion properties. Magn Reson Med 77:1390–1398CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Palombo M, Ligneul C, Valette J (2016) Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: diffusion in long fibers (almost) accounts for non-monoexponential attenuation. Magn Reson Med.  https://doi.org/10.1002/mrm.26548
  45. 45.
    Palombo M, Ligneul C, Najac C et al (2016) New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc Natl Acad Sci U S A 113:6671–6676CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julien Flament
    • 1
    • 2
  • Philippe Hantraye
    • 1
    • 2
    • 3
    Email author
  • Julien Valette
    • 1
    • 3
  1. 1.CEA, DRF, Institut de biologie François JacobMolecular Imaging Research Center (MIRCen)Fontenay-aux-RosesFrance
  2. 2.INSERM, US27Fontenay-aux-RosesFrance
  3. 3.CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199)Fontenay-aux-RosesFrance

Personalised recommendations