Advertisement

Generating Excitotoxic Lesion Models of Huntington’s Disease

  • Mariah J. LelosEmail author
  • Stephen B. Dunnett
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1780)

Abstract

In Huntington’s disease (HD), the medium spiny projection neurons of the neostriatum degenerate early in the course of the disease. While genetic mutant models of HD provide an excellent resource for studying the molecular and cellular effects of the inherited polyQ huntingtin mutation, they do not typically present with overt atrophy of the basal ganglia, despite this being a major pathophysiological hallmark of the disease. By contrast, excitotoxic lesion models, which use quinolinic acid to specifically target the striatal projection neurons, are employed to study the functional consequences of striatal atrophy and to investigate potential therapeutic interventions that target the neuronal degeneration. This chapter provides a detailed guide to the generation of excitotoxic lesion models of HD in rats.

Keywords

Excitotoxic lesion Huntington’s disease Quinolinic acid Motor Cognition Striatum Neurotoxin 

Notes

Acknowledgments

Our own work in this area has been supported by funding from the Medical Research Council, the EU FP7 Repair HD and NeuroStemCell Repair consortia, and Parkinson’s UK charity. We thank David Harrison for generating photographic material for the figure.

References

  1. 1.
    Dunnett S, Brooks S (2018) Motor assessment in Huntington’s disease mice. In: Precious S, Rosser A, Dunnett S (eds) Methods in molecular biology. Huntington’s disease. Springer protocols. Humana Press, New YorkGoogle Scholar
  2. 2.
    Fareham P, Bates G (2018) Mouse models of Huntington’s disease. In: Precious S, Rosser A, Dunnett S (eds) Methods in molecular biology. Huntington’s disease. Springer protocols. Humana Press, New YorkGoogle Scholar
  3. 3.
    Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMedGoogle Scholar
  4. 4.
    Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649CrossRefPubMedGoogle Scholar
  5. 5.
    Braak H, Braak E (1992) Allocortical involvement in Huntington’s disease. Neuropathol Appl Neurobiol 18:539–547CrossRefPubMedGoogle Scholar
  6. 6.
    Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 133:257–261CrossRefPubMedGoogle Scholar
  7. 7.
    Heinsen H, Strik M, Bauer M et al (1994) Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol 88:320–333CrossRefPubMedGoogle Scholar
  8. 8.
    Rüb U, Hentschel M, Stratmann K et al (2014) Huntington’s disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol 24:247–260.  https://doi.org/10.1111/bpa.12115 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beal MF, Kowall NW, Swartz KJ et al (1989) Differential sparing of somatostatin-neuropeptide y and cholinergic neurons following striatal excitotoxin lesions. Synapse 3:38–47CrossRefPubMedGoogle Scholar
  10. 10.
    el-Defrawy SR, Boegman RJ, Jhamandas K, Beninger RJ (1986) The neurotoxic actions of quinolinic acid in the central nervous system. Can J Physiol Pharmacol 64:369–375CrossRefPubMedGoogle Scholar
  11. 11.
    Köhler C, Schwarcz R (1983) Comparison of ibotenate and kainate neurotoxicity in rat brain: a histological study. Neuroscience 8:819–835CrossRefPubMedGoogle Scholar
  12. 12.
    Schwarcz R, Köhler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85–90CrossRefPubMedGoogle Scholar
  13. 13.
    Beal MF, Kowall NW, Ellison DW et al (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171CrossRefPubMedGoogle Scholar
  14. 14.
    Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11:1649–1659CrossRefPubMedGoogle Scholar
  15. 15.
    Dawbarn D, De Quidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease. Brain Res 340:251–260CrossRefPubMedGoogle Scholar
  16. 16.
    Ferrante RJ, Kowall NW, Beal MF et al (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230:561–563CrossRefPubMedGoogle Scholar
  17. 17.
    Lelos MJ, Harrison DJ, Rosser AE, Dunnett SB (2013) The lateral neostriatum is necessary for compensatory ingestive behaviour after intravascular dehydration in female rats. Appetite 71:287–294CrossRefPubMedGoogle Scholar
  18. 18.
    Brasted PJ, Humby T, Dunnett SB, Robbins TW (1997) Unilateral lesions of the dorsal striatum in rats disrupt responding in egocentric space. J Neurosci 17:8919–8926CrossRefPubMedGoogle Scholar
  19. 19.
    Lelos MJ, Harrison DJ, Dunnett SB (2011) Impaired sensitivity to Pavlovian stimulus-outcome learning after excitotoxic lesion of the ventrolateral neostriatum. Behav Brain Res 225:522–528CrossRefPubMedGoogle Scholar
  20. 20.
    Voorn P, Vanderschuren LJ, Groenewegen HJ et al (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474CrossRefPubMedGoogle Scholar
  21. 21.
    Döbrössy MD, Dunnett SB (2006) The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats. Exp Neurol 199:373–383CrossRefPubMedGoogle Scholar
  22. 22.
    Dobrossy MD, Dunnett SB (2005) Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington’s disease. Neuroscience 132:543–552CrossRefPubMedGoogle Scholar
  23. 23.
    Klein A, Lane EL, Dunnett SB (2013) Brain repair in a unilateral rat model of Huntington’s disease: new insights into impairment and restoration of forelimb movement patterns. Cell Transplant 22:1735–1751CrossRefPubMedGoogle Scholar
  24. 24.
    Lelos MJ, Roberton VH, Vinh N-N et al (2016) Direct comparison of rat- and human-derived ganglionic eminence tissue grafts on motor function. Cell Transplant 25:665–675CrossRefPubMedGoogle Scholar
  25. 25.
    Tartaglione AM, Armida M, Potenza RL et al (2016) Aberrant self-grooming as early marker of motor dysfunction in a rat model of Huntington’s disease. Behav Brain Res 313:53–57CrossRefPubMedGoogle Scholar
  26. 26.
    Scattoni ML, Valanzano A, Popoli P et al (2004) Progressive behavioural changes in the spatial open-field in the quinolinic acid rat model of Huntington’s disease. Behav Brain Res 152:375–383CrossRefPubMedGoogle Scholar
  27. 27.
    Trueman RC, Brooks SP, Dunnett SB (2005) Implicit learning in a serial choice visual discrimination task in the operant 9-hole box by intact and striatal lesioned mice. Behav Brain Res 159:313–322CrossRefPubMedGoogle Scholar
  28. 28.
    Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19:181–189CrossRefPubMedGoogle Scholar
  29. 29.
    Featherstone RE, McDonald RJ (2005) Lesions of the dorsolateral striatum impair the acquisition of a simplified stimulus-response dependent conditional discrimination task. Neuroscience 136:387–395CrossRefPubMedGoogle Scholar
  30. 30.
    Lindgren HS, Wickens R, Tait DS et al (2013) Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology 71:148–153CrossRefPubMedGoogle Scholar
  31. 31.
    Castañé A, Theobald DEH, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210:74–83CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dunnett SB, White A (2006) Striatal grafts alleviate bilateral striatal lesion deficits in operant delayed alternation in the rat. Exp Neurol 199:479–489CrossRefPubMedGoogle Scholar
  33. 33.
    Eagle DM, Humby T, Dunnett SB, Robbins TW (1999) Effects of regional striatal lesions on motor, motivational, and executive aspects of progressive-ratio performance in rats. Behav Neurosci 113:718–731CrossRefPubMedGoogle Scholar
  34. 34.
    Kendall AL, David F, Rayment G et al (2000) The influence of excitotoxic basal ganglia lesions on motor performance in the common marmoset. Brain 123:1442–1458CrossRefPubMedGoogle Scholar
  35. 35.
    Skaggs K, Goldman D, Parent JM (2014) Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 62:2061–2079CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brooks SP, Trueman RC, Dunnett SB (2007) Striatal lesions in the mouse disrupt acquisition and retention, but not implicit learning, in the SILT procedural motor learning task. Brain Res 1185:179–188CrossRefPubMedGoogle Scholar
  37. 37.
    Lelos MJ, Harrison DJ, Dunnett SB (2012) Intrastriatal excitotoxic lesion or dopamine depletion of the neostriatum differentially impairs response execution in extrapersonal space. Eur J Neurosci 36:3420–3428CrossRefPubMedGoogle Scholar
  38. 38.
    Dunnett SB, Heuer A, Lelos M et al (2012) Bilateral striatal lesions disrupt performance in an operant delayed reinforcement task in rats. Brain Res Bull 88:251–260CrossRefPubMedGoogle Scholar
  39. 39.
    Brasted PJ, Dobrossy MD, Robbins TW, Dunnett SB (1998) Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers. Brain Res Bull 46:487–493CrossRefPubMedGoogle Scholar
  40. 40.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, LondonGoogle Scholar
  41. 41.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, LondonGoogle Scholar
  42. 42.
    Burns LH, Pakzaban P, Deacon TW et al (1995) Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience 64:1007–1017CrossRefPubMedGoogle Scholar
  43. 43.
    Brownell AL, Hantraye P, Wullner U et al (1994) PET- and MRI-based assessment of glucose utilization, dopamine receptor binding, and hemodynamic changes after lesions to the caudate-putamen in primates. Exp Neurol 125:41–51CrossRefPubMedGoogle Scholar
  44. 44.
    Sugimoto T, Mizuno N (1987) Quinolinic and kainic acids can enhance calcitonin gene-related peptide-like immunoreactivity in striatal neurons with substance P-like immunoreactivity. Brain Res 418:392–397CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brain Repair Group, School of BiosciencesCardiff UniversityWalesUK
  2. 2.Brain Repair GroupCardiff UniversityCardiffUK

Personalised recommendations