Skip to main content

Extraction of Plant Lipids for LC-MS-Based Untargeted Plant Lipidomics

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1778))

Abstract

Lipids are defined as hydrophobic or amphipathic small molecules which consist of a number of structurally and functionally distinct molecules that span from nonpolar to neutral to polar compounds. Lipidomics is the comprehensive analysis of all lipids in a biological system. Changes in lipid metabolism and composition, as well as of distinct lipid species have been linked with altered plant growth, development, and responses to environmental stresses including salinity. Recently, improved liquid chromatography mass spectrometry (LC-MS)-based techniques have provided the rapid expansion of lipidomics research. Sample preparation and lipid extraction are important steps in lipidomics, and this chapter describes important considerations in lipid monophasic and biphasic extractions from plant tissues prior to untargeted plant lipidomics approaches with LC-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson AD (2006) Lipidomics: a global approach to lipid analysis in biological system. J Lipid Res 14:2101–2111

    Article  CAS  Google Scholar 

  2. Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344

    Article  CAS  PubMed  Google Scholar 

  3. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  4. Fahy E, Subramaniam S, Murphy R et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  CAS  PubMed  Google Scholar 

  6. Narasimhan R, Wang G, Li M et al (2013) Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation. Phytochemistry 96:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Meer G (2005) Cellular lipidomics. EMBO J 24:3159–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Comm Mass Spectrom 21:1304–1314

    Article  CAS  Google Scholar 

  9. Lee YJ, Perdian DC, Song Z et al (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J 70:81–95

    Article  CAS  PubMed  Google Scholar 

  10. Okazaki Y, Kamide Y, Hirai MY, Saito K (2013) Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-offlight mass spectrometry. Metabolomics 9:121–131

    Article  CAS  PubMed  Google Scholar 

  11. Hill CB, Bacic A, Roessner U (2014) LC-MS profiling to link metabolic and phenotypic diversity in plant mapping populations. In: Raftery D (ed) Mass spectrometry in metabolomics, Methods in molecular biology (methods and protocols), vol 1198. Humana, New York, pp 29–41

    Google Scholar 

  12. Horn PJ, Chapman KD (2012) High-resolution measurements in plant biology: lipidomics in tissues, cells and subcellular compartments. Plant J 70:69–80

    Article  CAS  PubMed  Google Scholar 

  13. Samarakoon T, Shiva S, Lowe K et al (2012) Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. In: Normanly J (ed) High-throughput phenotyping in plants, Methods in molecular biology (methods and protocols), vol 918. Humana, Totowa, pp 179–268

    Chapter  Google Scholar 

  14. Shiva S, Vu HS, Roth MR, Zhou Z, Marepally SR, Nune DS, Lushington GH, Visvanathan M, Welti R (2013) Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. Plant Lipid Signal Protoc 1009:79–91

    Article  CAS  Google Scholar 

  15. Chalbi N, Martínez-Ballesta MC, Youssef NB, Carvajal M (2015) Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity. J Plant Physiol 175:148–156

    Article  CAS  PubMed  Google Scholar 

  16. Hu C, Heijden R, Wang M et al (2009) Analytical strategies in lipidomics and application in disease biomarker discovery. J Chromatogr B 87:2836–2846

    Article  CAS  Google Scholar 

  17. Mazumdar J, Striepen B (2007) Make it or take it: fatty acid metabolisum of apicomplexan parasites. Eukaryot Cell 6:1727–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kofeler HC, Fauland A, Rechberger GN, Trotzmuler M (2012) Mass spectrometry based lipidomics: An overview of technological platforms. Meta 2:19–38

    Google Scholar 

  19. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem 37:911–917

    PubMed  CAS  Google Scholar 

  20. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  21. Milne S, Ivanova P, Forrester J, Brown HAH (2006) Lipidomics: an analysis of cellular lipids by ESI-MS. Methods 39:92–103

    Article  CAS  PubMed  Google Scholar 

  22. Hartler J, Tharakan R, Kofeler HC et al (2013) Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform 14:375–390

    Article  CAS  PubMed  Google Scholar 

  23. Ejsing S, Duchoslav E, Sampaio J et al (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78:6202–6214

    Article  CAS  PubMed  Google Scholar 

  24. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    Article  CAS  PubMed  Google Scholar 

  25. Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith CA, Want EJ, O'Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Anal Chem 78:779–787

    Article  CAS  Google Scholar 

  27. Cotter D, Maer A, Guda C et al (2006) LMPD: LIPID MAPS proteome database. Nucleic Acids Res 34:507–510

    Article  CAS  Google Scholar 

  28. Kind T, Okazaki Y, Saito K, Fiehn O (2014) LipidBlast templates as flexible tools for creating new in-silico tandem mass spectral libraries. Anal Chem 86:11024–11027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herzog R, Schuhmann K, Schwudke D et al (2012) LipidXplorer: a software for consensual cross-platform lipidomics. PLoS One 7:e29851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hartler J, Trötzmüller M, Chitraju C et al (2012) Lipid data analyzer: unattended identification and quantitation of lipids in LC-MS data. Bioinformatics 27:572–577

    Article  CAS  Google Scholar 

  31. Ahmed Z, Mayr M, Zeeshan S et al (2015) Lipid-pro: a computational lipid identification solution for untargeted lipidomics on data-independent acquisition tandem mass spectrometry platforms. Bioinforma Oxf Engl 31:1150–1153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thusitha W. T. Rupasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rupasinghe, T.W.T., Roessner, U. (2018). Extraction of Plant Lipids for LC-MS-Based Untargeted Plant Lipidomics. In: António, C. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 1778. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7819-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7819-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7818-2

  • Online ISBN: 978-1-4939-7819-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics