Skip to main content

Semi-targeted Lipidomics of Plant Acyl Lipids Using UPLC-HR-MS in Combination with a Data-Independent Acquisition Mode

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1778))

Abstract

In recent years, multiple mass-spectrometric methods have been developed to tackle fundamental analytical questions in the field of biology and biochemistry. One essential approach relies on the use of liquid chromatography (LC), for efficient compound separation, coupled to high-resolution mass spectrometry (HR-MS). Even though these techniques are highly sensitive allowing for the reliable measurement of several thousand mass features, the major bottleneck is to convert the measured masses into annotated lipid species. To overcome this problem, we present a simple, example-based workflow, which provides an introduction to basic strategies for the manual validation of LC-MS-based lipidomic data. The whole strategy makes use of a data-independent acquisition (DIA) method, where alternating MS measurement cycles using high and low-energy scans are used. This measurement strategy allows to reliably annotate lipids, based on the exact mass measurements of intact, but also fragmented lipids from continuously recorded spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muro E, Atilla-Gokcumen GE, Eggert US (2014) Lipids in cell biology: how can we understand them better? Mol Biol Cell 25:1819–1823

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fahy E, Subramaniam S, Brown HA et al (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  PubMed  Google Scholar 

  3. Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  CAS  PubMed  Google Scholar 

  5. Hummel J, Segu S, Li Y et al (2011) Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front Plant Sci 2:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  7. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  8. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Ann Rev Anal Chem 3:433–465

    Article  CAS  Google Scholar 

  9. Harkewicz R, Dennis EA (2011) Applications of mass spectrometry to lipids and membranes. Ann Rev Biochem 80:301–325

    Article  CAS  PubMed  Google Scholar 

  10. Shiva S, Vu HS, Roth MR et al (2013) Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. In: Munnik T, Heilmann I (eds) Plant lipid signaling protocols, Methods in molecular biology (methods and protocols), vol 1009. Humana, Totowa, pp 79–91

    Chapter  Google Scholar 

  11. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem 61:192–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Almeida R, Pauling JK, Sokol E et al (2015) Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am Soc Mass Spectrom 26:133–148

    Article  CAS  PubMed  Google Scholar 

  13. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  CAS  PubMed  Google Scholar 

  14. Fauland A, Kofeler H, Trotzmuller M et al (2011) A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J Lipid Res 52:2314–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okazaki Y, Kamide Y, Hirai MY, Saito K (2013) Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 9:121–131

    Article  CAS  PubMed  Google Scholar 

  16. Cifkova E, Holcapek M, Lisa M et al (2012) Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem 84:10064–10070

    Article  CAS  PubMed  Google Scholar 

  17. Degenkolbe T, Giavalisco P, Zuther E et al (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982

    Article  CAS  PubMed  Google Scholar 

  18. Salem MA, Juppner J, Bajdzienko K, Giavalisco P (2016) Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salem M, Bernach M, Bajdzienko K, Giavalisco P (2017) A simple fractionated extraction method for the comprehensive analysis of metabolites, lipids, and proteins from a single sample. J Vis Exp 124:e55802

    Google Scholar 

  20. Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086

    Article  CAS  PubMed  Google Scholar 

  21. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636

    Article  CAS  PubMed  Google Scholar 

  22. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gowda H, Ivanisevic J, Johnson CH et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Devaiah SP, Roth MR, Baughman E et al (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry 67:1907–1924

    Article  CAS  PubMed  Google Scholar 

  25. Tarazona P, Feussner K, Feussner I (2015) An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. Plant J 84:621–633

    Article  CAS  PubMed  Google Scholar 

  26. Vu HS, Shiva S, Roth MR et al (2014) Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J 80:728–743

    Article  CAS  PubMed  Google Scholar 

  27. Castro-Perez J, Roddy TP, Nibbering NM et al (2011) Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom 22:1552–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu FF, Turk J (2008) Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 19:1673–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poad BL, Pham HT, Thomas MC et al (2010) Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. J Am Soc Mass Spectrom 21:1989–1999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Andrea Leisse and Dr. Vinzenz Hofferek for technical assistance. The Max Planck Society and the DAAD are kindly acknowledged for the generous funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Giavalisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salem, M.A., Giavalisco, P. (2018). Semi-targeted Lipidomics of Plant Acyl Lipids Using UPLC-HR-MS in Combination with a Data-Independent Acquisition Mode. In: António, C. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 1778. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7819-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7819-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7818-2

  • Online ISBN: 978-1-4939-7819-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics