Advertisement

Preparation and Characterization of Tau Oligomer Strains

  • Urmi Sengupta
  • Mariana Carretero-Murillo
  • Rakez Kayed
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)

Abstract

An increasing number of studies have demonstrated the existence of multiple conformational entities of tau, as have been observed for prion protein. We have developed and optimized techniques to isolate and study oligomeric tau strains both in vitro and ex vivo. Moreover, we have modified protocols that demonstrate the seeding properties of oligomeric tau strains that are capable of propagating in vivo. These methods and protocols are explained in this chapter.

Key words

Tau oligomeric strains Tau oligomer isolation In vitro tau seeding In vivo tau propagation 

Notes

Acknowledgment

We thank Kayed lab members for their contributions in developing and optimizing the protocols and providing us with their helpful suggestions. This work was supported by grants from NIH RF1AG055771, RO1AG054025 and RO1NS094557, and The Gillson Longenbaugh Foundation.

References

  1. 1.
    Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3(1):a006833. https://doi.org/10.1101/cshperspect.a006833CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Prusiner SB (2013) Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 47:601–623. https://doi.org/10.1146/annurev-genet-110711-155524CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Morales R (2017) Prion strains in mammals: different conformations leading to disease. PLoS Pathog 13(7):e1006323. https://doi.org/10.1371/journal.ppat.1006323CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s amyloid beta (Abeta) prions. Proc Natl Acad Sci U S A 109(27):11025–11030. https://doi.org/10.1073/pnas.1206555109CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer's disease patients. Proc Natl Acad Sci U S A 111(28):10323–10328. https://doi.org/10.1073/pnas.1408900111CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317. https://doi.org/10.1073/pnas.1514475112CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Goedert M, Spillantini MG (2017) Propagation of tau aggregates. Mol Brain 10(1):18. https://doi.org/10.1186/s13041-017-0298-7CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Clos AL, Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Jackson GR, Kelly B, Beachkofsky TM, Kayed R (2011) Formation of immunoglobulin light chain amyloid oligomers in primary cutaneous nodular amyloidosis. Br J Dermatol 165(6):1349–1354. https://doi.org/10.1111/j.1365-2133.2011.10508.xCrossRefPubMedGoogle Scholar
  9. 9.
    Fa M, Puzzo D, Piacentini R, Staniszewski A, Zhang H, Baltrons MA, Li Puma DD, Chatterjee I, Li J, Saeed F, Berman HL, Ripoli C, Gulisano W, Gonzalez J, Tian H, Costa JA, Lopez P, Davidowitz E, Yu WH, Haroutunian V, Brown LM, Palmeri A, Sigurdsson EM, Duff KE, Teich AF, Honig LS, Sierks M, Moe JG, D'Adamio L, Grassi C, Kanaan NM, Fraser PE, Arancio O (2016) Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci Rep 6:19393. https://doi.org/10.1038/srep19393CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ward SM, Himmelstein DS, Lancia JK, Binder LI (2012) Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 40(4):667–671. https://doi.org/10.1042/BST20120134CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014) Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40(Suppl 1):S97–S111. https://doi.org/10.3233/JAD-132477CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700. https://doi.org/10.1038/srep00700CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26(5):1946–1959. https://doi.org/10.1096/fj.11-199851CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gerson JE, Sengupta U, Kayed R (2017) Tau oligomers as pathogenic seeds: preparation and propagation in vitro and in vivo. In: Smet-Nocca C (ed) Tau protein: methods and protocols. Springer, New York, NY, pp 141–157. https://doi.org/10.1007/978-1-4939-6598-4_9CrossRefGoogle Scholar
  15. 15.
    Kaufman SK, Thomas TL, Del Tredici K, Braak H, Diamond MI (2017) Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue. Acta Neuropathol Commun 5:41. https://doi.org/10.1186/s40478-017-0442-8CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley A, Thorpe JR, Serpell LC, Miller TM, Grinberg LT, Seeley WW, Diamond MI (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82(6):1271–1288. https://doi.org/10.1016/j.neuron.2014.04.047CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gerson JE, Sengupta U, Lasagna-Reeves CA, Guerrero-Munoz MJ, Troncoso J, Kayed R (2014) Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol Commun 2:73. https://doi.org/10.1186/2051-5960-2-73CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Holmes BB, Furman JL, Mahan TE, Yamasaki TR, Mirbaha H, Eades WC, Belaygorod L, Cairns NJ, Holtzman DM, Diamond MI (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci U S A 111(41):E4376–E4385. https://doi.org/10.1073/pnas.1411649111CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci 110(23):9535–9540. https://doi.org/10.1073/pnas.1301175110CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Taraboulos A, Jendroska K, Serban D, Yang SL, DeArmond SJ, Prusiner SB (1992) Regional mapping of prion proteins in brain. Proc Natl Acad Sci U S A 89(16):7620–7624CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrPSc molecules with different conformations. Nat Med 4(10):1157–1165CrossRefPubMedGoogle Scholar
  22. 22.
    Choi YP, Peden AH, Gröner A, Ironside JW, Head MW (2010) Distinct stability states of disease-associated human prion protein identified by conformation-dependent immunoassay. J Virol 84(22):12030–12038. https://doi.org/10.1128/JVI.01057-10CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eenjes E, Dragich JM, Kampinga HH, Yamamoto A (2016) Distinguishing aggregate formation and aggregate clearance using cell based assays. J Cell Sci 129(6):1260–1270CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett ADT, Dineley KT, Jackson GR, Kayed R (2014) Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34(12):4260–4272. https://doi.org/10.1523/jneurosci.3192-13.2014CrossRefPubMedGoogle Scholar
  25. 25.
    Guerrero-Munoz MJ, Castillo-Carranza DL, Sengupta U, White MA, Kayed R (2013) Design of metastable beta-sheet oligomers from natively unstructured peptide. ACS Chem Neurosci 4(12):1520–1523. https://doi.org/10.1021/cn4001395CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ramachandran G (2017) Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance raman (UVRR) spectroscopy, and atomic force microscopy (AFM) for study of the kinetics of formation and structural characterization of tau fibrils. In: Smet-Nocca C (ed) Tau protein: methods and protocols. Springer New York, New York, NY, pp 113–128. https://doi.org/10.1007/978-1-4939-6598-4_7CrossRefGoogle Scholar
  27. 27.
    Nanavaty N, Lin L, Hinckley SH, Kuret J (2017) Detection and quantification methods for fibrillar products of in vitro tau aggregation assays. In: Smet-Nocca C (ed) Tau protein: methods and protocols. Springer New York, New York, pp 101–111. https://doi.org/10.1007/978-1-4939-6598-4_6CrossRefGoogle Scholar
  28. 28.
    Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18(4):815–821. https://doi.org/10.1093/emboj/18.4.815CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci 99(14):9196–9201. https://doi.org/10.1073/pnas.142459399CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Furman JL, Holmes BB, Diamond MI (2015) Sensitive detection of proteopathic seeding activity with FRET flow cytometry. J Vis Exp 106:e53205. https://doi.org/10.3791/53205CrossRefGoogle Scholar
  31. 31.
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. https://doi.org/10.1038/ncb1901CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Golub VM, Brewer J, Wu X, Kuruba R, Short J, Manchi M, Swonke M, Younus I, Reddy DS (2015) Neurostereology protocol for unbiased quantification of neuronal injury and neurodegeneration. Front Aging Neurosci 7:196. https://doi.org/10.3389/fnagi.2015.00196CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Crisostomo AC, Dang L, Digambaranath JL, Klaver AC, Loeffler DA, Payne JJ, Smith LM, Yokom AL, Finke JM (2015) Kinetic analysis of IgG antibodies to beta-amyloid oligomers with surface plasmon resonance. Anal Biochem 481:43–54. https://doi.org/10.1016/j.ab.2015.03.032CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hearty S, Leonard P, O'Kennedy R (2012) Measuring antibody-antigen binding kinetics using surface plasmon resonance. Methods Mol Biol 907:411–442. https://doi.org/10.1007/978-1-61779-974-7_24CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Karlsson R, Katsamba PS, Nordin H, Pol E, Myszka DG (2006) Analyzing a kinetic titration series using affinity biosensors. Anal Biochem 349(1):136–147. https://doi.org/10.1016/j.ab.2005.09.034CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Margittai M, Langen R (2004) Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 101(28):10278–10283. https://doi.org/10.1073/pnas.0401911101CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Siddiqua A, Margittai M (2010) Three- and four-repeat tau coassemble into heterogeneous filaments: an implication for Alzheimer disease. J Biol Chem 285(48):37920–37926. https://doi.org/10.1074/jbc.M110.185728CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, Buckner N, Hanmer J, Davies P, O'Neill MJ, Hutton ML, Citron M (2011) Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467. https://doi.org/10.1074/jbc.M111.229633CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Combs B, Hamel C, Kanaan NM (2016) Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies. Neurobiol Dis 94:18–31. https://doi.org/10.1016/j.nbd.2016.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP (2012) Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 149(1):232–244. https://doi.org/10.1016/j.cell.2012.02.016CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Petry FR, Pelletier J, Bretteville A, Morin F, Calon F, Hébert SS, Whittington RA, Planel E (2014) Specificity of anti-tau antibodies when analyzing mice models of Alzheimer’s disease: problems and solutions. PLoS One 9(5):e94251. https://doi.org/10.1371/journal.pone.0094251CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rosseels J, Van den Brande J, Violet M, Jacobs D, Grognet P, Lopez J, Huvent I, Caldara M, Swinnen E, Papegaey A, Caillierez R, Buée-Scherrer V, Engelborghs S, Lippens G, Colin M, Buée L, Galas M-C, Vanmechelen E, Winderickx J (2015) Tau monoclonal antibody generation based on humanized yeast models: impact on tau oligomerization and diagnostics. J Biol Chem 290(7):4059–4074. https://doi.org/10.1074/jbc.M114.627919CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Urmi Sengupta
    • 1
    • 2
    • 3
  • Mariana Carretero-Murillo
    • 1
    • 2
    • 3
  • Rakez Kayed
    • 1
    • 2
    • 3
  1. 1.George P. and Cynthia Woods Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Department of NeurologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Department of Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations