Advertisement

Preparation of Tau Oligomers After the Protein Extraction from Bacteria and Brain Cortices

  • Elentina K. Argyrousi
  • Agnieszka Staniszewski
  • Russell E. Nicholls
  • Ottavio Arancio
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)

Abstract

Oligomerization of soluble tau protein is attracting the attention of an increasingly larger number of scientists involved in research on Alzheimer’s disease and other tauopathies. A variety of methods have been developed for the purification of proteins from biological tissues and bacterial cells. Various types of high performance liquid chromatography (HPLC) and affinity tags represent the most common techniques for isolating proteins. Here, we describe a procedure for extracting recombinant tau protein from bacterial cells, utilizing a 6×His affinity tag, or endogenous tau from brain cortices using acid extraction followed by fast protein liquid chromatography (FPLC). Additionally, we introduce a method for oligomerization based on reduction and oxidation of cysteine residues. Our preparation assures high yield of tau protein, while preserving its physiological function.

Key words

Recombinant tau Tau extraction Tau oligomerization Affinity tag purification Fast protein liquid chromatography Alzheimer’s disease Tauopathy 

Notes

Acknowledgments

We wish to thank Mauro Fà for his contribution during the development of the methodology. The work has been supported by NIH grants NS049442 and AG049402 (O.A.).

References

  1. 1.
    Lodish H, Berk A, Zipursky S, Matsudaira P, Baltimore D, Darnell J (2000) Purifying, detecting, and characterizing proteins. In: Molecular cell biology. W. H. Freeman, New YorkGoogle Scholar
  2. 2.
    Horvath C, Melander W (1977) Liquid chromatography with hydrocarbonaceous bonded phases; theory and practice of reversed phase chromatography. J Chromatogr Sci 15(9):393–404CrossRefGoogle Scholar
  3. 3.
    Selkirk C (2004) Ion-exchange chromatography. Methods Mol Biol 244:125–131PubMedPubMedCentralGoogle Scholar
  4. 4.
    Barth HG, Boyes BE, Jackson C (1996) Size exclusion chromatography. Anal Chem 68(12):445–466CrossRefGoogle Scholar
  5. 5.
    Cuatrecasas P (1970) Protein purification by affinity chromatography derivatizations of agarose and polyacrylamide beads. J Biol Chem 245(12):3059–3065PubMedPubMedCentralGoogle Scholar
  6. 6.
    Derewenda ZS (2004) The use of recombinant methods and molecular engineering in protein crystallization. Methods 34(3):354–363CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67(1):31–40CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fox JD, Waugh DS (2003) Maltose-binding protein as a solubility enhancer. Methods Mol Biol 205:99–117PubMedPubMedCentralGoogle Scholar
  9. 9.
    Goedert M, Jakes R, Spillantini M, Hasegawa M (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383(6600):550CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kampers T, Friedhoff P, Biernat J, Mandelkow E-M, Mandelkow E (1996) RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 399(3):344–349CrossRefPubMedGoogle Scholar
  11. 11.
    Pérez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of τ into filaments in the presence of heparin: the minimal sequence required for τ-τ interaction. J Neurochem 67(3):1183–1190CrossRefPubMedGoogle Scholar
  12. 12.
    Wilson DM, Binder LI (1997) Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am J Pathol 150(6):2181PubMedPubMedCentralGoogle Scholar
  13. 13.
    Santa-María I, Hernández F, Martín CP, Avila J, Moreno FJ (2004) Quinones facilitate the self-assembly of the phosphorylated tubulin binding region of tau into fibrillar polymers. Biochemistry 43(10):2888–2897CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumar S, Tepper K, Kaniyappan S, Biernat J, Wegmann S, Mandelkow E-M, Müller DJ, Mandelkow E (2014) Stages and conformations of the Tau repeat domain during aggregation and its effect on neuronal toxicity. J Biol Chem 289(29):20318–20332CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fá M, Puzzo D, Piacentini R, Staniszewski A, Zhang H, Baltrons MA, Puma DL, Chatterjee I, Li J, Saeed F (2016) Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci Rep 6:19393CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elentina K. Argyrousi
    • 1
    • 2
    • 3
  • Agnieszka Staniszewski
    • 1
    • 2
  • Russell E. Nicholls
    • 1
    • 2
  • Ottavio Arancio
    • 1
    • 2
    • 4
  1. 1.Department of Pathology and Cell BiologyColumbia UniversityNew YorkUSA
  2. 2.The Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia UniversityNew YorkUSA
  3. 3.Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS)Maastricht UniversityMaastrichtThe Netherlands
  4. 4.Department of MedicineColumbia UniversityNew YorkUSA

Personalised recommendations