Advertisement

Preparation of α-Synuclein Amyloid Assemblies for Toxicity Experiments

  • Serene W. Chen
  • Nunilo Cremades
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)

Abstract

Amyloid assemblies of certain proteins, including the Parkinson disease-related protein α-synuclein, are commonly associated with the development and spreading of neurodegenerative diseases, although the nature of the most toxic forms and the mechanisms by which they trigger neurodegeneration remain largely unknown. This is at least in part due to the inherent challenges involved in the preparation of stable and structurally homogeneous samples of amyloid assemblies that could be used in toxicity experiments. Here, we describe the preparation of two different types of stable α-synuclein amyloid assemblies, namely a kinetically trapped oligomeric species and a propagating-competent fibrillar polymorph. The degree of heterogeneity in the samples has been defined and carefully minimized, thus allowing for meaningful structure-toxicity relationships in different α-synuclein amyloid assemblies to be established.

Key words

Amyloid assemblies Protein aggregation Fibril Oligomer α-Synuclein Toxicity Neurodegenerative disorders 

Notes

Acknowledgment

This work was supported by the Agency for Science, Technology and Research, Singapore (S.W.C.) and the Spanish Ministry of Economy, Industry and Competitiveness (BFU-2015-64119-P and RYC-2012-12068, N.C.).

References

  1. 1.
    Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jimenez JL, Guijarro JI, Orlova E et al (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18:815–821CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefPubMedGoogle Scholar
  4. 4.
    Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fitzpatrick AW, Debelouchina GT, Bayro MJ et al (2013) Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc Natl Acad Sci U S A 110:5468–5473CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefPubMedGoogle Scholar
  8. 8.
    Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357CrossRefGoogle Scholar
  9. 9.
    Tsigelny IF, Crews L, Desplats P et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3:e3135CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Winner B, Jappell IR, Maji SK et al (2011) In vivo demonstration that {alpha}-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cremades N, Cohen SI, Deas E et al (2012) Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149:1048–1059CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kalia L, Kalia SK, McLean PJ et al (2013) Alpha-synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 73:155–169CrossRefPubMedGoogle Scholar
  13. 13.
    Chen SW, Drakulic S, Deas E et al (2015) Structural characterization of toxic oligomers that are kinetically trapped during alpha-synuclein fibril formation. Proc Natl Acad Sci U S A 112:1994–2003CrossRefGoogle Scholar
  14. 14.
    Horrocks MH, Lee SF, Gandhi S et al (2016) Single-molecule imaging of individual amyloid protein aggregates in human biofluids. ACS Chem Neurosci 7:399–406CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci 10:408CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Luk KC, Kehm V, Carroll J et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Peelaerts W, Bousset L, Van der Perren A et al (2015) Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344CrossRefPubMedGoogle Scholar
  18. 18.
    Prusiner SB, Woerman AL, Mordes DA et al (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112:5308–5317CrossRefGoogle Scholar
  19. 19.
    Woerman AL, Stohr J, Aoyagi A et al (2015) Propagation of prions causing synucleinopathies in cultured cells. Proc Natl Acad Sci U S A 112:4949–4958CrossRefGoogle Scholar
  20. 20.
    Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106:13010–13015CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hansen C, Angot E, Bergstrom AL et al (2011) Alpha-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cremades N, Dobson CM (2018) The combination of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Neurobiol Dis 109(Pt B):178–190CrossRefPubMedGoogle Scholar
  23. 23.
    Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19:315–327CrossRefPubMedGoogle Scholar
  24. 24.
    Cremades N, Chen SW, Dobson CM (2017) Structural characteristics of alpha-synuclein oligomers. Int Rev Cell Mol Biol 329:79–143CrossRefPubMedGoogle Scholar
  25. 25.
    Kad NM, Myers SL, Smith DP et al (2003) Hierarchical assembly of beta2-microglobulin amyloid in vitro revealed by atomic force microscopy. J Mol Biol 330:785–797CrossRefPubMedGoogle Scholar
  26. 26.
    Kaylor J, Bodner N, Edridge S et al (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 353:357–372CrossRefPubMedGoogle Scholar
  27. 27.
    Goldsbury C, Frey P, Olivieri V et al (2005) Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. J Mol Biol 352:282–298CrossRefPubMedGoogle Scholar
  28. 28.
    Heise H, Hoyer W, Becker S et al (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102:15871–15876CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jain S, Udgaonkar JB (2011) Defining the pathway of worm-like amyloid fibril formation by the mouse prion protein by delineation of the productive and unproductive oligomerization reactions. Biochemistry 50:1153–1161CrossRefPubMedGoogle Scholar
  30. 30.
    Bitan G, Kirkitadze MD, Lomakin A et al (2003) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100:330–335CrossRefPubMedGoogle Scholar
  31. 31.
    Gosal WS, Morten IJ, Hewitt EW et al (2005) Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid. J Mol Biol 351:850–864CrossRefPubMedGoogle Scholar
  32. 32.
    Bader R, Bamford R, Zurdo J et al (2006) Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation. J Mol Biol 356:189–208CrossRefPubMedGoogle Scholar
  33. 33.
    Kumar S, Udgaonkar JB (2009) Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation. J Mol Biol 385:1266–1276CrossRefPubMedGoogle Scholar
  34. 34.
    Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, Cecchi C, Vendruscolo M, Chiti F, Cremades N, Ying L, Dobson CM, De Simone A. (2017) Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358(6369):1440–1443CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232CrossRefPubMedGoogle Scholar
  36. 36.
    Volles MJ, Lee SJ, Rochet JC et al (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819CrossRefPubMedGoogle Scholar
  37. 37.
    van Rooijen BD, van Leijenhorst-Groener KA, Claessens MM et al (2009) Tryptophan fluorescence reveals structural features of alpha-synuclein oligomers. J Mol Biol 394:826–833CrossRefPubMedGoogle Scholar
  38. 38.
    Celej MS, Sarroukh R, Goormaghtigh E et al (2012) Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem J 443:719–726CrossRefPubMedGoogle Scholar
  39. 39.
    Zijlstra N, Blum C, Segers-Nolten IM et al (2012) Molecular composition of sub-stoichiometrically labeled alpha-synuclein oligomers determined by single-molecule photobleaching. Angew Chem Int Ed Engl 51:8821–8824CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lorenzen N, Nielsen SB, Buell AK et al (2014) The role of stable alpha-synuclein oligomers in the molecular events underlying amyloid formation. J Am Chem Soc 136:3859–3868CrossRefPubMedGoogle Scholar
  41. 41.
    Paslawski W, Andreasen M, Nielsen SB et al (2014) High stability and cooperative unfolding of alpha-synuclein oligomers. Biochemistry 53:6252–6263CrossRefPubMedGoogle Scholar
  42. 42.
    Giehm L, Svergun DI, Otzen DE et al (2011) Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci U S A 108:3246–3251CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lorenzen N, Lemminger L, Pedersen JN et al (2014) The N-terminus of alpha-synuclein is essential for both monomeric and oligomeric interactions with membranes. FEBS Lett 588:497–502CrossRefPubMedGoogle Scholar
  44. 44.
    Deas E, Cremades N, Angelova PR et al (2016) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal 24:376–391CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Angelova PR, Ludtmann MH, Horrocks MH et al (2016) Ca2+ is a key factor in alpha-synuclein-induced neurotoxicity. J Cell Sci 129:1792–1801CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Devine MJ, Ryten M, Vodicka P et al (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2:440CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefPubMedGoogle Scholar
  48. 48.
    Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200CrossRefPubMedGoogle Scholar
  49. 49.
    Kayed R, Head E, Sarsoza F et al (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Noguchi A, Matsumura S, Dezawa M et al (2009) Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains. J Biol Chem 284:32895–32905CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hillen H, Barghorn S, Striebinger A et al (2010) Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J Neurosci 30:10369–10379CrossRefPubMedGoogle Scholar
  52. 52.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U et al (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Serpell LC, Sunde M, Fraser PE et al (1995) Examination of the structure of the transthyretin amyloid fibril by image reconstruction from electron micrographs. J Mol Biol 254:113–118CrossRefPubMedGoogle Scholar
  54. 54.
    Serpell LC, Sunde M, Benson MD et al (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300:1033–1039CrossRefPubMedGoogle Scholar
  55. 55.
    Vilar M, Chou HT, Luhrs T et al (2008) The fold of alpha-synuclein fibrils. Proc Natl Acad Sci U S A 105:8637–8642CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhang R, Hu X, Khant H et al (2009) Interprotofilament interactions between Alzheimer’s Abeta1-42 peptides in amyloid fibrils revealed by cryoEM. Proc Natl Acad Sci U S A 106:4653–4658CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lashuel HA, Hartley D, Petre BM et al (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291CrossRefPubMedGoogle Scholar
  58. 58.
    Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744CrossRefPubMedGoogle Scholar
  61. 61.
    Uversky VN, Li J, Souillac P et al (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978CrossRefPubMedGoogle Scholar
  62. 62.
    Hoyer W, Antony T, Cherny D et al (2002) Dependence of alpha-synuclein aggregate morphology on solution conditions. J Mol Biol 322:383–393CrossRefPubMedGoogle Scholar
  63. 63.
    Munishkina LA, Henriques J, Uversky VN et al (2004) Role of protein-water interactions and electrostatics in alpha-synuclein fibril formation. Biochemistry 43:3289–3300CrossRefPubMedGoogle Scholar
  64. 64.
    Campioni S, Carret G, Jordens S et al (2014) The presence of an air-water interface affects formation and elongation of alpha-synuclein fibrils. J Am Chem Soc 136:2866–2875CrossRefPubMedGoogle Scholar
  65. 65.
    Buell AK, Galvagnion C, Gaspar R et al (2014) Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci U S A 111:7671–7676CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cohen SI, Linse S, Luheshi LM et al (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110:9758–9763CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bousset L, Pieri L, Ruiz-Arlandis G et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dearborn AD, Wall JS, Cheng N et al (2016) Alpha-synuclein amyloid fibrils with two entwined, asymmetrically associated protofibrils. J Biol Chem 291:2310–2318CrossRefPubMedGoogle Scholar
  69. 69.
    Der-Sarkissian A, Jao CC, Chen J et al (2003) Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535CrossRefPubMedGoogle Scholar
  70. 70.
    Chen M, Margittai M, Chen J et al (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282:24970–24979CrossRefPubMedGoogle Scholar
  71. 71.
    Gath J, Bousset L, Habenstein B et al (2014) Yet another polymorph of alpha-synuclein: solid-state sequential assignments. Biomol NMR Assign 8:395–404CrossRefPubMedGoogle Scholar
  72. 72.
    Tuttle MD, Comellas G, Nieuwkoop AJ et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol 23:409–415CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Miake H, Mizusawa H, Iwatsubo T et al (2002) Biochemical characterization of the core structure of alpha-synuclein filaments. J Biol Chem 277:19213–19219CrossRefPubMedGoogle Scholar
  74. 74.
    Comellas G, Lemkau LR, Nieuwkoop AJ et al (2011) Structured regions of alpha-synuclein fibrils include the early-onset Parkinson’s disease mutation sites. J Mol Biol 411:881–895CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Aprile FA, Arosio P, Fusco G et al (2017) Inhibition of alpha-synuclein fibril elongation by Hsp70 is governed by a kinetic binding competition between alpha-synuclein species. Biochemistry 56:1177–1180CrossRefPubMedGoogle Scholar
  76. 76.
    Ikenoue T, Lee YH, Kardos J et al (2014) Cold denaturation of alpha-synuclein amyloid fibrils. Angew Chem Int Ed Engl 53:7799–7804CrossRefPubMedGoogle Scholar
  77. 77.
    Petkova AT, Buntkowsky G, Dyda F et al (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335:247–260CrossRefPubMedGoogle Scholar
  78. 78.
    Qiang W, Yau WM, Luo Y et al (2012) Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils. Proc Natl Acad Sci U S A 109:4443–4448CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CambridgeCambridge CB2 1EWUnited Kingdom
  2. 2.Institute for Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC)University of ZaragozaZaragoza 50018Spain

Personalised recommendations