Advertisement

Biochemical Properties of Pathology-Related Tau Species in Tauopathy Brains: An Extraction Protocol for Tau Oligomers and Aggregates

  • Naruhiko Sahara
  • Taeko Kimura
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)

Abstract

Intracellular deposition of microtubule-associated protein tau in the form of filamentous aggregates is a prominent neuropathological feature of neurodegenerative disorders termed tauopathy. Formation of filamentous tau aggregates is presumably initiated by phosphorylation and/or conformational change of protein structure followed by oligomerization and fibril extension. These processes via intermediate oligomers have not yet been entirely resolved. To examine the biochemical properties of tau protein including oligomers, standardized isolation methods will invariably provide molecular mechanisms of tauopathy. In this chapter, we describe the procedures for isolating tau oligomers based on biochemical properties.

Key words

Tau TBS extraction Centrifugation Aggregation intermediates Dimer SDS-PAGE 

Notes

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research on Innovation Area (“Brain Protein Aging” 26117001) and Scientific Research (C) (15K06793) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and the Strategic Research Program for Brain Sciences from the Japan Agency for Medical Research and Development, AMED.

References

  1. 1.
    Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 41(1):17–24CrossRefPubMedGoogle Scholar
  2. 2.
    Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science (New York, NY) 293(5530):711–714CrossRefGoogle Scholar
  3. 3.
    Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science (New York, NY) 309(5733):476–481CrossRefGoogle Scholar
  4. 4.
    Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 87(15):5827–5831CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ksiezak-Reding H, Binder LI, Yen SH (1990) Alzheimer disease proteins (A68) share epitopes with tau but show distinct biochemical properties. J Neurosci Res 25(3):420–430. https://doi.org/10.1002/jnr.490250320CrossRefPubMedGoogle Scholar
  6. 6.
    Selkoe DJ (1986) Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer's disease? Neurobiol Aging 7(6):425–432CrossRefPubMedGoogle Scholar
  7. 7.
    Wisniewski HM, Iqbal K, Grundke-Iqbal I, Rubenstein R (1987) The solubility controversy of paired helical filaments: a commentary. Neurochem Res 12(1):93–95CrossRefPubMedGoogle Scholar
  8. 8.
    Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268(32):24374–24384PubMedGoogle Scholar
  9. 9.
    Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98(12):6923–6928CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C, Rosenberry TL, Lewis J, Hutton M, Janus C (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27(14):3650–3662CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700. https://doi.org/10.1038/srep00700CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Khlistunova I, Biernat J, Wang Y, Pickhardt M, von Bergen M, Gazova Z, Mandelkow E, Mandelkow EM (2006) Inducible expression of tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 281(2):1205–1214. https://doi.org/10.1074/jbc.M507753200CrossRefPubMedGoogle Scholar
  13. 13.
    Sahara N, DeTure M, Ren Y, Ebrahim A-S, Kang D, Knight J, Volbracht C, Pedersen JT, Dickson DW, Yen S-H, Lewis J (2013) Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain. J Alzheimers Dis 33(1):249–263. https://doi.org/10.3233/jad-2012-121093CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25(4):402–405CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kenessey A, Nacharaju P, Ko LW, Yen SH (1997) Degradation of tau by lysosomal enzyme cathepsin D: implication for Alzheimer neurofibrillary degeneration. J Neurochem 69(5):2026–2038CrossRefPubMedGoogle Scholar
  16. 16.
    Jicha GA, O'Donnell A, Weaver C, Angeletti R, Davies P (1999) Hierarchical phosphorylation of recombinant tau by the paired-helical filament-associated protein kinase is dependent on cyclic AMP-dependent protein kinase. J Neurochem 72(1):214–224CrossRefPubMedGoogle Scholar
  17. 17.
    Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, Takashima A (2007) Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci 25(10):3020–3029CrossRefPubMedGoogle Scholar
  18. 18.
    Sahara N, Lewis J, DeTure M, McGowan E, Dickson DW, Hutton M, Yen SH (2002) Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. J Neurochem 83(6):1498–1508CrossRefPubMedGoogle Scholar
  19. 19.
    Sahara N, Maeda S, Yoshiike Y, Mizoroki T, Yamashita S, Murayama M, Park JM, Saito Y, Murayama S, Takashima A (2007) Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res 85(14):3098–3108CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science (New York, NY) 293(5534):1487–1491CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Functional Brain Imaging ResearchNational Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChibaJapan

Personalised recommendations