Preparation of a Well-Defined and Stable β-Barrel Pore-Forming Aβ42 Oligomer

  • Montserrat Serra-Batiste
  • Martí Ninot-Pedrosa
  • Eduard Puig
  • Sonia Ciudad
  • Margarida Gairí
  • Natàlia Carulla
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)


The formation of amyloid-β peptide (Aβ) oligomers at the cellular membrane is considered a crucial process that underlies neurotoxicity in Alzheimer’s disease (AD). To obtain structural information on this type of oligomers, we were inspired by membrane protein approaches used to stabilize, characterize, and analyze the function of such proteins. Using these approaches, we developed conditions under which Aβ42, the Aβ variant most strongly linked to the aetiology of AD, assembles into an oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a β-barrel arrangement. We named this oligomer β-barrel Pore-Forming Aβ42 Oligomer (βPFOAβ42). Here, we describe detailed protocols for its preparation and characterization. We expect βPFOAβ42 to be useful in establishing the involvement of membrane-associated Aβ oligomers in AD.

Key words

Alzheimer’s disease Amyloid-β peptide Membrane pore Micelles Oligomer 



M.N.P. and E.P. acknowledge the Spanish Government FPI program for predoctoral fellowships. This work was supported by Program Grants from the MINECO-FEDER (SAF2015-68789), from the Fundació La Marató de TV3 (20140730/31), from the Fondation pour la Researche Médicale (FRM)—Amorçage de Jeunes Equips (AJE20151234751), and from the Counseil Régional d’Aquitaine Limousin Poitou-Charentes (2016-1R30117) to N.C.


  1. 1.
    Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90:567–571CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci U S A 93:1710–1715CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hirakura Y, Lin MC, Kagan BL (1999) Alzheimer amyloid Aβ1-42 channels: effects of solvent, pH, and congo red. J Neurosci Res 57:458–466CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kourie JI, Henry CL, Farrelly P (2001) Diversity of amyloid beta protein fragment [1-40]-formed channels. Cell Mol Neurobiol 21:255–284CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kayed R, Sokolov Y, Edmonds B et al (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:1–6CrossRefGoogle Scholar
  8. 8.
    Laurén J, Gimbel DA, Nygaard HB et al (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bode DC, Baker MD, Viles JH (2017) Ion channel formation by amyloid-β42 oligomers but not amyloid-β40 in cellular membranes. J Biol Chem 292:1404–1413CrossRefPubMedGoogle Scholar
  10. 10.
    Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775CrossRefPubMedGoogle Scholar
  11. 11.
    Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40CrossRefPubMedGoogle Scholar
  12. 12.
    Columbus L, Lipfert J, Jambunathan K et al (2009) Mixing and matching detergents for membrane protein NMR structure determination. J Am Chem Soc 131:7320–7326CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hiller S, Garces RG, Malia TJ et al (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Barrett PJ, Song Y, Van Horn WD et al (2012) The Amyloid Precursor Protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Laganowsky A, Reading E, Hopper JTS, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8:639–651CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Inoue S (2008) In situ Abeta pores in AD brain are cylindrical assembly of Abeta protofilaments. Amyloid 15:223–233CrossRefPubMedGoogle Scholar
  17. 17.
    Serra-Batiste M, Ninot-Pedrosa M, Bayoumi M et al (2016) Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. Proc Natl Acad Sci U S A 113:10866–10871CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shao H, Jao S-C, Ma K, Zagorski MG (1998) Solution structures of micelle-bound amyloid β-(1-40) and β-(1-42) peptides of Alzheimer’s disease. J Mol Biol 285:1–19Google Scholar
  20. 20.
    Teplow DB (2006) Preparation of amyloid β-protein for structural and functional studies. Methods Enzymol 413:20–33CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Conibear AC, Daly NL, Craik DJ (2012) Quantification of small cyclic disulfide-rich peptides. Biopolymers 98:518–524CrossRefPubMedGoogle Scholar
  22. 22.
    Tew DJ, Bottomley SP, Smith DP et al (2008) Stabilization of neurotoxic soluble beta-sheet-rich conformations of the Alzheimer’s disease amyloid-beta peptide. Biophys J 94:2752–2766CrossRefPubMedGoogle Scholar
  23. 23.
    Turro NJ, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100:5951–5952CrossRefGoogle Scholar
  24. 24.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Montserrat Serra-Batiste
    • 1
  • Martí Ninot-Pedrosa
    • 1
    • 2
  • Eduard Puig
    • 1
    • 2
  • Sonia Ciudad
    • 1
    • 2
  • Margarida Gairí
    • 3
  • Natàlia Carulla
    • 1
    • 2
  1. 1.Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute Science and TechnologyBarcelonaSpain
  2. 2.CBMN (UMR 5248), University of Bordeaux—CNRS—IPB, Institut Européen de Chimie et BiologiePessacFrance
  3. 3.NMR Facility, Scientific and Technological CentersUniversity of Barcelona (CCiTUB)BarcelonaSpain

Personalised recommendations