Skip to main content

Noninvasive Structural Analysis of Intermediate Species During Fibrillation: An Application of Small-Angle X-Ray Scattering

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1779))

Abstract

Structural investigation of intermediately formed oligomers and pre-fibrillar species is of tremendous importance in order to elucidate the structural principles of fibrillation, and because intermediate species have been suggested as the pathogenic agents in several amyloid diseases. Structural investigations are however greatly complicated by the dynamic changes between structural states of very different sizes and life-times. Small angle X-ray scattering (SAXS) is an ideal method to handle this challenge. The method provides information about the fibrillation process (number of species present and their volume fractions) and low-resolution 3-dimensional structural models of individual species, notably also of the intermediately formed, in-process species from undisturbed fibrillation equilibria. Here, we provide a detailed description of the methods used for the measurement and analysis of SAXS data from fibrillating samples, exemplified using data from our own research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  2. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68

    Article  CAS  PubMed  Google Scholar 

  3. Roberts HL, Brown DR (2015) Seeking a mechanism for the toxicity of oligomeric alpha-synuclein. Biomol Ther 5:282–305

    CAS  Google Scholar 

  4. Guerrero-Munoz MJ, Gerson J, Castillo-Carranza DL (2015) Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci 9:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Groenning M, Campos RI, Hirschberg D et al (2015) Considerably unfolded transthyretin monomers preceed and exchange with dynamically structured amyloid protofibrils. Sci Rep 5:11443

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cremades N, Cohen SI, Deas E et al (2012) Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149:1048–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martins IC, Kuperstein I, Wilkinson H et al (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233

    Article  CAS  PubMed  Google Scholar 

  8. Langkilde AE, Vestergaard B (2012) Structural characterization of prefibrillar intermediates and amyloid fibrils by small-angle X-ray scattering. Methods Mol Biol 849:137–155

    Article  CAS  PubMed  Google Scholar 

  9. Herranz-Trillo F, Groenning M, van Maarschalkerweerd A et al (2017) Structural analysis of multi-component amyloid systems by chemometric SAXS data decomposition. Structure 25:5–15

    Article  CAS  PubMed  Google Scholar 

  10. Vestergaard B, Groenning M, Roessle M et al (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5:e134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giehm L, Svergun DI, Otzen DE et al (2011) Low-resolution structure of a vesicle disrupting alpha-synuclein oligomer that accumulates during fibrillation. Proc Natl Acad Sci U S A 108:3246–3251

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fodera V, Vetri V, Wind TS et al (2014) Observation of the early structural changes leading to the formation of protein superstructures. J Phys Chem Lett 5:3254–3258

    Article  CAS  PubMed  Google Scholar 

  13. Langkilde AE, Morris KL, Serpell LC et al (2015) The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. Acta Crystallogr D 71:882–895

    Article  CAS  PubMed  Google Scholar 

  14. Nors Perdersen M, Fodera V, Horvath I et al (2015) Direct correlation between ligand-induced alpha-synuclein oligomers and amyloid-like fibril growth. Sci Rep 5:10422

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tauler R, Smilde A, Kowalski B (1995) Selectivity, local rank, 3-way data-analysis and ambiguity in multivariate curve resolution. J Chemom 9:31–58

    Article  CAS  Google Scholar 

  16. Tauler R (2001) Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution. J Chemom 15:627–646

    Article  CAS  Google Scholar 

  17. Jaumot J, Marchan V, Gargallo R et al (2004) Multivariate curve resolution applied to the analysis and resolution of two-dimensional [H-1,N-15] NMR reaction spectra. Anal Chem 76:7094–7101

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen SB, Macchi F, Raccosta S et al (2013) Wildtype and A30P mutant alpha-synuclein form different fibril structures. PLoS One 8:e67713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nors Pedersen M, Fodera V, Horvath I et al (2015) Corrigendum: direct correlation between ligand-induced alpha-synuclein oligomers and amyloid-like fibril growth. Sci Rep 5:15692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Maarschalkerweerd A, Vetri V, Langkilde AE et al (2014) Protein/lipid coaggregates are formed during alpha-synuclein-induced disruption of lipid bilayers. Biomacromolecules 15:3643–3654

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira CLP, Behrens MA, Pedersen JS et al (2009) A SAXS study of glucagon fibrillation. J Mol Biol 387:147–161

    Article  CAS  PubMed  Google Scholar 

  22. Larsson DH, Takman PA, Lundstrom U et al (2011) A 24 keV liquid-metal-jet x-ray source for biomedical applications. Rev Sci Instrum 82:123701

    Article  CAS  PubMed  Google Scholar 

  23. Chatani E, Inoue R, Imamura H et al (2015) Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering. Sci Rep 5:15485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Graewert MA, Franke D, Jeffries CM et al (2015) Automated pipeline for purification, biophysical and x-ray analysis of biomacromolecular solutions. Sci Rep 5:10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pernot P, Round A, Barrett R et al (2013) Upgraded ESRF BM29 beamline for SAXS on macromolecules in solution. J Synchrotron Radiat 20:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Round A, Felisaz F, Fodinger L et al (2015) BioSAXS sample changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments. Acta Crystallogr D Biol Crystallogr 71:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Acerbo AS, Cook MJ, Gillilan RE (2015) Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution. J Synchrotron Radiat 22:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skou S, Gillilan RE, Ando N (2014) Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat Protoc 9:1727–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leiding T, Wang J, Martinsson J et al (2010) Proton and cation transport activity of the M2 proton channel from influenza A virus. Proc Natl Acad Sci U S A 107:15409–15414

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tauler R (1995) Multivariate curve resolution applied to second order data. Chemometr Intell Lab 30:133–146

    Article  CAS  Google Scholar 

  31. Jaumot J, Gargallo R, de Juan A et al (2005) A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometr Intell Lab 76:101–110

    Article  CAS  Google Scholar 

  32. Fodera V, Groenning M, Vetri V et al (2008) Thioflavin T hydroxylation at basic pH and its effect on amyloid fibril detection. J Phys Chem B 112:15174–15181

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson KP, Aslund A, Berg I et al (2007) Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer’s disease using novel luminescent probes. ACS Chem Biol 2:553–560

    Article  CAS  PubMed  Google Scholar 

  34. A P Hammersley (1997) ESRF Internal Report, ESRF97HA02T, “FIT2D: An Introduction and Overview”

    Google Scholar 

  35. Franke D Saxsview https://github.com/emblsaxs/saxsview

  36. Hopkins JB, Gillilan RE, Skou S (2017) BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 50:1545–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Franke D, Petoukhov MV, Konarev PV et al (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50:1212–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petoukhov MV, Franke D, Shkumatov AV et al (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Konarev PV, Volkov VV, Sokolova AV et al (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  40. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schrödinger L The PyMOL molecular graphics system

    Google Scholar 

  42. BioISIS Tutorial. http://bioisis.net/tutorial

  43. SAXIER forum. www.saxier.org/forum

  44. Svergun DI, Koch MHJ, Timmins PA et al (2013) Small angle X-ray and neutron scattering from solutions of biological macromolecules. Oxford University Press, Oxford

    Book  Google Scholar 

  45. Wold S (1995) Chemometrics; what do we mean with it, and what do we want from it? Chemometr Intell Lab 30:109–115

    Article  CAS  Google Scholar 

  46. Glatter O, Kratky O (eds) (1982) Small-angle X-ray scattering. Academic, London

    Google Scholar 

  47. Porod G (1951) Die Rontgenkleinwinkelstreuung Von Dichtgepackten Kolloiden Systemen.1. Kolloid Z Z Polym 124:83–114

    Article  CAS  Google Scholar 

  48. Holtzer A (1955) Interpretation of the angular distribution of the light scattered by a polydisperse system of rods. J Polym Sci 17:432–434

    Article  CAS  Google Scholar 

  49. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Windig W, Gallagher NB, Shaver JM et al (2005) A new approach for interactive self-modeling mixture analysis. Chemometr Intell Lab 77:85–96

    Article  CAS  Google Scholar 

  51. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    Article  CAS  Google Scholar 

  53. Powers ET, Powers DL (2006) The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the “supercritical concentration”. Biophys J 91:122–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The experiences gathered in this chapter were not collected overnight, thus we would like to thank our colleagues and collaborators for significant discussions and help. In particular, we thank current and former members of the BioSAXS group at the University of Copenhagen. From EMBL-Hamburg, we warmly thank Dmitri I. Svergun and several members of his group for highly valuable help throughout this long scientific journey. It is mentioned in particular that the strong commitment of beamline staff is a crucial aspect during this kind of experiments. We greatly acknowledge plenty beamtime at beamlines X33 and P12 (EMBL-Hamburg), without which the development of the methodology described here would not have been possible. We also appreciate funding from The Lundbeck Foundation, the Novo Nordisk Foundation, the Danish Research Council for Health and Disease, and DANSCATT (A.E.L and B.V). This work was additionally supported by SPIN-HD—Chaires d’execellence 2011 from the Agence National de la Recherche, ATIP-Avenir and the French Infrastructure for Integrated Structural Biology (FRISBI—ANR-10-INSB-05-01) to P.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Vestergaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Langkilde, A.E., Herranz-Trillo, F., Bernadó, P., Vestergaard, B. (2018). Noninvasive Structural Analysis of Intermediate Species During Fibrillation: An Application of Small-Angle X-Ray Scattering. In: Sigurdsson, E., Calero, M., Gasset, M. (eds) Amyloid Proteins. Methods in Molecular Biology, vol 1779. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7816-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7816-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7815-1

  • Online ISBN: 978-1-4939-7816-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics