Advertisement

Mapping Amyloid Regions in Gad m 1 with Peptide Arrays

  • Rosa Sánchez
  • Javier Martínez
  • Laura Montoya
  • Milagros Castellanos
  • Maria Gasset
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)

Abstract

Amyloid formation is basically featured by a protein-protein interaction in which the reacting regions are the segments assembling into cross β-sheets. To identify these segments both theoretical and experimental tools have been developed. Here, we focus on the use of peptide arrays to probe the binding of several amyloid-specific probes such as the OC and A11 anti-amyloid conformation-selective antibodies and of monomers and preformed fibrils. These arrays use libraries containing partly overlapping peptides derived from the sequence of Gad m 1, the major allergen from Atlantic cod, which forms amyloids under gastrointestinal relevant conditions.

Key words

Peptide arrays Amyloids Anti-amyloid antibodies Food allergens Gad m 1 

Notes

Acknowledgments

This work was supported by grants from Spanish AEI/EU-FEDER SAF2014-52661-C3 and BFU2015-72271-EXP. M.C. was supported by a Juan de la Cierva Postdoctoral contract.

References

  1. 1.
    Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tycko R, Wickner RB (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 46:1487–1496CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Riek R, Eisenberg DS (2016) The activities of amyloids from a structural perspective. Nature 539:227–235CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bleem A, Daggett V (2017) Structural and functional diversity among amyloid proteins: agents of disease, building blocks of biology, and implications for molecular engineering. Biotechnol Bioeng 114:7–20CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jimenez JL, Nettleton EJ, Bouchard M et al (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 99:9196–9201CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefPubMedGoogle Scholar
  9. 9.
    Eisenberg DS, Sawaya MR (2017) Structural studies of amyloid proteins at the molecular level. Annu Rev Biochem 86:69–95CrossRefPubMedGoogle Scholar
  10. 10.
    Fitzpatrick AW, Debelouchina GT, Bayro MJ et al (2013) Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc Natl Acad Sci U S A 110:5468–5473CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tsolis AC, Papandreou NC, Iconomidou VA et al (2013) A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One 8:e54175CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gasior P, Kotulska M (2014) FISH amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids. BMC Bioinformatics 15:54CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Goldschmidt L, Teng PK, Riek R et al (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107:3487–3492CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rigter A, Priem J, Timmers-Parohi D et al (2009) Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays. Methods Mol Biol 570:257–271CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tessier PM, Lindquist S (2007) Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447:556–561CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Picaud S, Filippakopoulos P (2015) SPOTing acetyl-lysine dependent interactions. Microarrays 4:370–388CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267:13–26CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kayed R, Head E, Sarsoza F et al (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu JW, Breydo L, Isas JM et al (2010) Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. J Biol Chem 285:6071–6079CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Laganowsky A, Liu C, Sawaya MR et al (2012) Atomic view of a toxic amyloid small oligomer. Science 335:1228–1231CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu C, Zhao M, Jiang L et al (2012) Out-of-register beta-sheets suggest a pathway to toxic amyloid aggregates. Proc Natl Acad Sci U S A 109:20913–20918CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Glabe CG (2004) Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem Sci 29:542–547CrossRefPubMedGoogle Scholar
  23. 23.
    Moreno-Del Alamo M, de la Espina SM, Fernandez-Tresguerres ME et al (2015) Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 5:14669CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sharp MF, Lopata AL (2014) Fish allergy: in review. Clin Rev Allergy Immunol 46:258–271CrossRefPubMedGoogle Scholar
  25. 25.
    Moraes AH, Ackerbauer D, Kostadinova M et al (2014) Solution and high-pressure NMR studies of the structure, dynamics, and stability of the cross-reactive allergenic cod parvalbumin Gad m 1. Proteins 82:3032–3042CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Martinez J, Sanchez R, Castellanos M et al (2015) Fish beta-parvalbumin acquires allergenic properties by amyloid assembly. Swiss Med Weekly 145:w14128Google Scholar
  27. 27.
    Sanchez R, Martinez J, Castro A et al (2016) The amyloid fold of Gad m 1 epitopes governs IgE binding. Sci Rep 6:32801CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rosa Sánchez
    • 1
  • Javier Martínez
    • 1
    • 2
    • 3
  • Laura Montoya
    • 1
  • Milagros Castellanos
    • 4
  • Maria Gasset
    • 1
  1. 1.Institute of Physical Chemistry “Rocasolano”Spanish National Research Council (CSIC)MadridSpain
  2. 2.Faculdade de Ciências, Departamento de Química e Bioquímica, Biosystems and Integrative Sciences InstituteUniversidade de LisboaLisbonPortugal
  3. 3.Departamento de Química e BioquímicaUniversidade de LisboaLisbonPortugal
  4. 4.IMDEA NacoscienceMadridSpain

Personalised recommendations