Advertisement

Purification and Fibrillation of Recombinant Human Amyloid-β, Prion Protein, and Tau Under Native Conditions

  • Alexander Sandberg
  • Sofie Nyström
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)

Abstract

Protein misfolding, aggregation, and amyloid formation is involved in a large number of diseases. Recombinantly expressed proteins to study the amyloid fibril formation process are important for mechanistic studies. We here report protocols for production, purification, and fibrillation of three different proteins commonly found in cerebral amyloid; Aβ and Tau found in Alzheimer’s disease, Chronic traumatic brain injury, Corticobasal degeneration, and Progressive Supranuclear Palsy and human prion protein found in Creutzfeldt-Jakob’s disease. The three protocols have in common that the protein is in a pH-neutral phosphate saline buffer during fibrillation to mimic their endogenous near physiological environment.

Key words

Amyloid Aβ Tau Prion protein Recombinant Purification Fibrillation Neurodegenerative disease 

Notes

Acknowledgement

This work was supported by the Swedish Alzheimer Foundation and The Swedish Research Council.

References

  1. 1.
    Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sipe JD, Benson MD, Buxbaum JN et al (2016) Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature guidelines. Amyloid 23:209–213CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Itakura K, Hirose T, Crea R et al (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198:1056–1063CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Murphy MP, LeVine H III (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19:311–323CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Walsh DM, Thulin E, Minogue AM et al (2009) A facile method for expression and purification of the Alzheimer’s disease-associated amyloid beta-peptide. FEBS J 276:1266–1281CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tolnay M, Probst A (2003) The neuropathological spectrum of neurodegenerative tauopathies. IUBMB Life 55:299–305CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zabel MD, Reid C (2015) A brief history of prions. Pathog Dis 73:ftv087CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zahn R, von Schroetter C, Wuthrich K (1997) Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett 417:400–404CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Macao B, Hoyer W, Sandberg A et al (2008) Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. BMC Biotechnol 8:82CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garai K, Crick SL, Mustafi SM et al (2009) Expression and purification of amyloid-beta peptides from Escherichia coli. Protein Expr Purif 66:107–112CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiao Y, Ma B, McElheny D et al (2015) Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Colvin MT, Silvers R, Ni QZ et al (2016) Atomic resolution structure of monomorphic Abeta42 amyloid fibrils. J Am Chem Soc 138:9663–9674CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wälti MA, Ravotti F, Arai H et al (2016) Atomic-resolution structure of a disease-relevant Abeta(1-42) amyloid fibril. Proc Natl Acad Sci U S A 113:E4976–E4984CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schmidt M, Rohou A, Lasker K et al (2015) Peptide dimer structure in an Abeta(1-42) fibril visualized with cryo-EM. Proc Natl Acad Sci U S A 112:11858–11863CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Falcon B, Cavallini A, Angers R et al (2015) Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem 290:1049–1065CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Corsaro A, Thellung S, Russo C et al (2002) Expression in E. coli and purification of recombinant fragments of wild type and mutant human prion protein. Neurochem Int 41:55–63CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Baskakov IV, Aagaard C, Mehlhorn I et al (2000) Self-assembly of recombinant prion protein of 106 residues. Biochemistry 39:2792–2804CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baskakov IV, Legname G, Baldwin MA et al (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277:21140–21148CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jackson GS, Hosszu LL, Power A et al (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937CrossRefPubMedGoogle Scholar
  20. 20.
    Bocharova OV, Breydo L, Parfenov AS et al (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 346:645–659CrossRefPubMedGoogle Scholar
  21. 21.
    Wulf MA, Senatore A, Aguzzi A (2017) The biological function of the cellular prion protein: an update. BMC Biol 15:34CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Almstedt K, Nyström S, Nilsson KP et al (2009) Amyloid fibrils of human prion protein are spun and woven from morphologically disordered aggregates. Prion 3:224–235CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nyström S, Mishra R, Hornemann S et al (2012) Multiple substitutions of methionine 129 in human prion protein reveal its importance in the amyloid fibrillation pathway. J Biol Chem 287:25975–25984CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nystrom S, Hammarstrom P (2015) Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions. Sci Rep 5:10101CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Furukawa Y, Kaneko K, Nukina N (2011) Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. J Biol Chem 286:27236–27246CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Morozova OA, March ZM, Robinson AS et al (2013) Conformational features of tau fibrils from Alzheimer’s disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry 52:6960–6967CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry, IFM-Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations