Preparation of Pure Populations of Amyloid β-Protein Oligomers of Defined Size

  • Eric Y. Hayden
  • Joseph L. Conovaloff
  • Ashley Mason
  • Gal Bitan
  • David B. Teplow
Part of the Methods in Molecular Biology book series (MIMB, volume 1779)


Protein and peptide oligomers are thought to play important roles in the pathogenesis of a number of neurodegenerative diseases. For this reason, considerable effort has been devoted to understanding the oligomerization process and to determining structure-activity relationships among the many types of oligomers that have been described. We discuss here a method for producing pure populations of amyloid β-protein (Aβ) of specific sizes using the most pathologic form of the peptide, Aβ42. This work was necessitated because Aβ oligomerization produces oligomers of many different sizes that are non-covalently associated, which means that dissociation or further assembly may occur. These characteristics preclude rigorous structure-activity determinations. In studies of Aβ40, we have used the method of photo-induced cross-linking of unmodified proteins (PICUP) to produce zero-length carbon-carbon bonds among the monomers comprising each oligomer, thus stabilizing the oligomers. We then isolated pure populations of oligomers by fractionating the oligomers by size using SDS-PAGE and then extracting each population from the stained gel bands. Although this procedure worked well with the shorter Aβ40 peptide, we found that a significant percentage of Aβ42 oligomers had not been stabilized. Here, we discuss a new method capable of yielding stable Aβ42 oligomers of sizes from dimer through dodecamer.

Key words

Amyloid β-protein Oligomers PICUP Purification 



We gratefully acknowledge the support of NIH grants AG027818, NS038328, and AG041295, the Jim Easton Consortium for Alzheimer’s Drug Discovery and Biomarkers at UCLA, and the California Department of Public Health, Alzheimer’s Disease Program, grant #07-65806.


  1. 1.
    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4):487–498CrossRefPubMedGoogle Scholar
  2. 2.
    Selkoe DJ (1994) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403CrossRefPubMedGoogle Scholar
  3. 3.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112CrossRefGoogle Scholar
  4. 4.
    Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69(5):567–577CrossRefPubMedGoogle Scholar
  5. 5.
    Walsh DM, Selkoe DJ (2007) Aβ oligomers – a decade of discovery. J Neurochem 101(5):1172–1184CrossRefPubMedGoogle Scholar
  6. 6.
    Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749–4753CrossRefPubMedGoogle Scholar
  7. 7.
    Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357CrossRefGoogle Scholar
  8. 8.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-β protein dimers isolated directly from Alzheimer brains impair synaptic plasticity and memory. Nat Med 14(8):837–842CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440(7082):352–357CrossRefGoogle Scholar
  10. 10.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Yang T, Li S, Xu H, Walsh DM, Selkoe DJ (2017) Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci 37(1):152–163CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100(1):330–335CrossRefPubMedGoogle Scholar
  13. 13.
    Harper JD, Wong SS, Lieber CM, Lansbury PT (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4(2):119–125CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272(35):22364–22372CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M, Bitner RS, Harlan J, Barlow E, Ebert U, Hillen H (2005) Globular amyloid β-peptide oligomer – a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95(3):834–847CrossRefPubMedGoogle Scholar
  16. 16.
    Gellermann GP, Byrnes H, Striebinger A, Ullrich K, Mueller R, Hillen H, Barghorn S (2008) Aβ-globulomers are formed independently of the fibril pathway. Neurobiol Dis 30(2):212–220CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci U S A 100(11):6370–6375CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Teplow DB (2006) Preparation of amyloid β-protein for structural and functional studies. Methods Enzymol 413:20–33CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Bitan G, Lomakin A, Teplow DB (2001) Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276(37):35176–35184CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Fancy DA (2000) Elucidation of protein-protein interactions using chemical cross-linking or label transfer techniques. Curr Opin Chem Biol 4(1):28–33CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Fancy DA, Kodadek T (1999) Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci U S A 96(11):6020–6024CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Younkin SG (1995) Evidence that Aβ42 is the real culprit in Alzheimer’s disease. Ann Neurol 37(3):287–288CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Hayden EY, Teplow DB (2012) Continuous flow reactor for the production of stable amyloid protein oligomers. Biochemist 51(32):6342–6349CrossRefGoogle Scholar
  25. 25.
    Yamin G, Huynh TP, Teplow DB (2015) Design and characterization of chemically stabilized Aβ42 oligomers. Biochemist 54(34):5315–5321CrossRefGoogle Scholar
  26. 26.
    Hayden EY, Conovaloff JL, Mason A, Bitan G, Teplow DB (2017) Preparation of pure populations of covalently stabilized amyloid β-protein oligomers of specific sizes. Anal Biochem 518:78–85CrossRefPubMedGoogle Scholar
  27. 27.
    Maji SK, Ogorzalek Loo RR, Inayathullah M, Spring SM, Vollers SS, Condron MM, Bitan G, Loo JA, Teplow DB (2009) Amino acid position-specific contributions to amyloid β-protein oligomerization. J Biol Chem 284(35):23580–23591CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eric Y. Hayden
    • 1
  • Joseph L. Conovaloff
    • 1
  • Ashley Mason
    • 1
  • Gal Bitan
    • 1
  • David B. Teplow
    • 1
  1. 1.Department of Neurology, Molecular Biology Institute, Brain Research Institute, David Geffen School of Medicine at UCLAUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations