Peptide Self-Assembly Measured Using Fluorescence Correlation Spectroscopy

  • Judith J. Mittag
  • Joachim O. Rädler
  • Jennifer J. McManus
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Fluorescence correlation spectroscopy (FCS) is a flexible and powerful technique to measure the diffusion of fluorescently labeled particles. It has been important in examining a range of biological processes, from intracellular transport, to DNA hybridization. It is particularly suited to measuring the assembly of peptides, since peptides are often too small to be detected by standard light scattering methods, or may not contain aromatic amino acid residues, which limits the use of other spectroscopic techniques. In this protocol, we describe state-of-the-art sample preparation for Aβ1–42 peptide solutions and the measurement and analysis of the self-assembly of the peptide to form fibrils via a number of intermediate states using FCS.

Key words

Fluorescence correlation spectroscopy Peptide Self-assembly Size distribution Complex fluids Polydispersity Gaussian distribution model 



This work was made possible by funding from Science Foundation Ireland Stokes Lectureship (to J. J.McM); European Science Foundation networking programme “epitopeMap” (grant to J.O. R. and J. J. McM); EU FP7 (NanoTransKinetics grant to JJM, JOR), Deutsche Forschungsgemeinschaft (JJM, travel grant).


  1. 1.
    Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. BioEssays 34:361–368CrossRefGoogle Scholar
  2. 2.
    Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708CrossRefGoogle Scholar
  3. 3.
    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27CrossRefGoogle Scholar
  4. 4.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61CrossRefGoogle Scholar
  5. 5.
    Rigler R, Mets Ű, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175CrossRefGoogle Scholar
  6. 6.
    Kinjo M, Rigler R (1995) Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucl Acids Res 23(10):1795–1799CrossRefGoogle Scholar
  7. 7.
    Fitzpatrick J, Lillemeier B (2011) Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Curr Opin Struct Biol 21(5):650–660CrossRefGoogle Scholar
  8. 8.
    Schwille P, Haustein E (2001) Fluorescence correlation spectroscopy—an introduction to its concepts and applications. Biophys Textbook Online 1(3):1–33Google Scholar
  9. 9.
    Rusu L, Gambhir A, McLaughlin S, Rädler JO (2004) Fluorescence correlation spectroscopy studies of peptide and protein binding phospholipid vesicles. Biophys J 87(2):1044–1053CrossRefGoogle Scholar
  10. 10.
    Comas-Garcia M, Garmann RF, Singaram SW, Ben-Shaul A, Knobler CM, Gelbart WM (2014) Characterisation of viral capsid protein self-assembly around short single-stranded RNA. J Phys Chem B 118(27):7510–7519CrossRefGoogle Scholar
  11. 11.
    Tjernberg LO, Pramanik A, Björling S, Thyberg P, Thyberg J, Nordstedt C, Berndt KD, Terenius L, Rigler R (1999) Amyloid β-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6(1):53–62CrossRefGoogle Scholar
  12. 12.
    Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S (2003) Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys J 84(3):1977–1984CrossRefGoogle Scholar
  13. 13.
    Garai K, Sahoo B, Sengupta P, Maiti S (2008) Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation. J Chem Phys 128(4):045102-1–045102-7CrossRefGoogle Scholar
  14. 14.
    Pal N, Verma SD, Singh MK, Singh MK, Sobhan S (2011) Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution. Anal Chem 83(20):7736–7744CrossRefGoogle Scholar
  15. 15.
    Mittag JJ, Milani S, Walsh DM, Rädler JO, McManus JJ (2014) Simultaneous measurement of a range of particle sizes during Aβ1-42 fibrillogenesis quantified using fluorescence correlation spectroscopy. Biochem Biophys Res Commun 448(2):195–199CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242CrossRefGoogle Scholar
  18. 18.
    Tirado M, Lopez Martinez C, Garcia de la Torre J (1984) Comparison of theories for the translational and rotational diffusion coefficients for rod-like macromolecules. Application to short DNA fragments. J Chem Phys 81(4):2047–2052CrossRefGoogle Scholar
  19. 19.
    Petrásěk Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448CrossRefGoogle Scholar
  20. 20.
    Dertinger T, Loman A, Ewers B, Müller CB, Krämer B, Enderlein J (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16(19):14353–14368CrossRefGoogle Scholar
  21. 21.
    Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. PicoQuant GmbH Application NoteGoogle Scholar
  22. 22.
    Dertinger T, Pacheco V, von der Hocht I, Hartman RH, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurement. Chem Phys Chem 8(3):433–443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Judith J. Mittag
    • 1
  • Joachim O. Rädler
    • 1
  • Jennifer J. McManus
    • 2
  1. 1.Fakultät für Physik and CeNSLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Department of ChemistryMaynooth UniversityMaynoothIreland

Personalised recommendations