Imaging Protein Fibers at the Nanoscale and In Situ

  • Angelo Bella
  • Michael Shaw
  • Emiliana De Santis
  • Maxim G. Ryadnov
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Protein self-assembly offers a rich repertoire of tools and technologies. However, despite significant progress in this area, a deterministic measure of the phenomenon, which might lead to predictable relationships between protein components, assembly mechanisms, and ultimately function, is lacking. Often the challenge relates to the choice of the most informative and precise measurements that can link the chemistry of the building blocks with the resulting assembly, ideally in situ and in real time. Using the example of protein fibrillogenesis—a self-assembly process fundamental to nearly every aspect of biological organization, from viral assembly to tissue restoration—this chapter demonstrates how protein self-assembly can be visually and precisely measured while providing measurement protocols applicable to other self-assembly systems.

Key words

Molecular self-assembly Nanometrology Real-time imaging Super-resolution microscopy Nanoscale biophysics Protein fibrillogenesis 


  1. 1.
    Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4774CrossRefGoogle Scholar
  2. 2.
    Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–9683CrossRefGoogle Scholar
  3. 3.
    Whitesides G, Mathias J, Seto C (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 80:1312–1319CrossRefGoogle Scholar
  4. 4.
    De Santis E, Ryadnov MG (2015) Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev 44:8288–8300CrossRefGoogle Scholar
  5. 5.
    Hay EH (2013) Cell biology of extracellular matrix, 2nd edn. Springer Science & Business Media, DordrechtGoogle Scholar
  6. 6.
    Grosse R, Vartiainen MK (2013) To be or not to be assembled: progressing into nuclear actin filaments. Nat Rev Mol Cell Biol 14:693–697CrossRefGoogle Scholar
  7. 7.
    Mienaltowski MJ, Birk DE (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29CrossRefGoogle Scholar
  8. 8.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17CrossRefGoogle Scholar
  9. 9.
    Van Raaij MJ, Mitraki A, Lavigne G, Cusack S (1999) A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401:935–938CrossRefGoogle Scholar
  10. 10.
    Papapostolou D, Smith AM, Atkins EDT, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104:10853–10858CrossRefGoogle Scholar
  11. 11.
    Smith AM, Acquah SFA, Bone NK, Harold W, Ryadnov MG, Stevens MSP, Walton DRM, Woolfson DN (2004) Polar assembly in a designed protein fiber. Angew Chem Int Ed Engl 44:325–328CrossRefGoogle Scholar
  12. 12.
    Scheibel T, Kowal AS, Bloom JD, Lindquist SL (2001) Bidirectional amyloid fiber growth for a yeast prion determinant. Curr Biol 11:366–369CrossRefGoogle Scholar
  13. 13.
    Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559–567CrossRefGoogle Scholar
  14. 14.
    De Santis E, Faruqui N, Noble JE, Ryadnov MG (2014) Exploitable length correlations in peptide nanofibres. Nanoscale 6:11425–11430CrossRefGoogle Scholar
  15. 15.
    Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci U S A 99:16748–16753CrossRefGoogle Scholar
  16. 16.
    Rong J, Oberbeck F, Wang X, Li X, Oxsher J, Niu Z, Wang Q (2009) Tobacco mosaic virus templated synthesis of one dimensional inorganic–polymer hybrid fibres. J Mater Chem 19:2841CrossRefGoogle Scholar
  17. 17.
    Poincloux R, Lizárraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122:3015–3024CrossRefGoogle Scholar
  18. 18.
    O'Holleran K, Shaw M (2014) Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy. Biomed Opt Express 5:2580–2590CrossRefGoogle Scholar
  19. 19.
    Shaw M, Zajiczek L, O’Holleran K (2015) High speed structured illumination microscopy in optically thick samples. Methods 88:11–19CrossRefGoogle Scholar
  20. 20.
    Chernyatina AA, Hess JF, Guzenko D, Voss JC, Strelkov SV (2016) How to study intermediate filaments in atomic detail. Methods Enzymol 568:3–33CrossRefGoogle Scholar
  21. 21.
    Liu C, Zhao M, Jiang L, Cheng PN, Park J, Sawaya MR, Pensalfini A, Gou D, Berk AJ, Glabe CG, Nowick J, Eisenberg D (2012) Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates. Proc Natl Acad Sci U S A 109:20913–20918CrossRefGoogle Scholar
  22. 22.
    Starborg T, Lu Y, Meadows RS, Kadler KE, Holmes DF (2008) Electron microscopy in cell-matrix research. Methods 45:53–64CrossRefGoogle Scholar
  23. 23.
    Bella A, Shaw M, Ray S, Ryadnov MG (2014) Filming protein fibrillogenesis in real time. Sci Rep 4:7529CrossRefGoogle Scholar
  24. 24.
    Bella A, Ray S, Shaw M, Ryadnov MG (2012) Arbitrary self-assembly of peptide extracellular microscopic matrices. Angew Chem Int Ed Engl 51:428–431CrossRefGoogle Scholar
  25. 25.
    Hartmann MD, Mendler CT, Bassler J, Karamichali I, Ridderbusch O, Lupas AN, Avarez BH (2016) α/β coiled coils. elife 5:11861Google Scholar
  26. 26.
    Ryadnov MG (2007) Peptide alpha-helices for synthetic nanostructures. Biochem Soc Trans 35:487–491CrossRefGoogle Scholar
  27. 27.
    Ryadnov MG, Bella A, Timson S, Woolfson DN (2009) Modular design of peptide fibrillar nano- to microstructures. J Am Chem Soc 131:13240–13241CrossRefGoogle Scholar
  28. 28.
    Anzini P, Xu C, Hughes S, Magnotti E, Jiang T, Hemmingsen L, Demeler B, Conticello VP (2013) Controlling self-assembly of a peptide-based material via metal-ion induced registry shift. J Am Chem Soc 135:10278–10281CrossRefGoogle Scholar
  29. 29.
    Potekhin SA, Melnik TN, Popov V, Lanina NF, Vazina AA, Rigler P, Verdini AS, Corradin G, Kajava AV (2001) De novo design of fibrils made of short α-helical coiled coil peptides. Chem Biol 8:1025–1032CrossRefGoogle Scholar
  30. 30.
    De Santis E, Castelletto V, Ryadnov MG (2015) Interfacial zippering-up of coiled-coil protein filaments. Phys Chem Chem Phys 17:31055–31060CrossRefGoogle Scholar
  31. 31.
    Ryadnov MG, Woolfson DN (2003) Engineering the morphology of a self-assembling protein fibre. Nat Mater 2:329–332CrossRefGoogle Scholar
  32. 32.
    Ryadnov MG, Woolfson DN (2005) MaP peptides: programming the self-assembly of peptide-based mesoscopic matrices. J Am Chem Soc 127:12407–12415CrossRefGoogle Scholar
  33. 33.
    Faruqui N, Bella A, Ravi J, Ray S, Lamarre B, Ryadnov MG (2014) Differentially instructive extracellular protein micro-nets. J Am Chem Soc 136:7889–7898CrossRefGoogle Scholar
  34. 34.
    Makin OS, Serpell LC (2005) X-ray diffraction studies of amyloid structure. Methods Mol Biol 299:67–80PubMedGoogle Scholar
  35. 35.
    Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342CrossRefGoogle Scholar
  36. 36.
    Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87CrossRefGoogle Scholar
  37. 37.
    Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970CrossRefGoogle Scholar
  38. 38.
    Pinotsi D, Buell AK, Galvagnion C, Dobson CM, Kaminski-Schierle GS, Kaminski CF (2014) Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett 14:339–345CrossRefGoogle Scholar
  39. 39.
    Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem 55:5445–5451CrossRefGoogle Scholar
  40. 40.
    Smith MB, Li H, Shen T, Huang X, Yusuf E, Vavylonis D (2010) Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton 67:693–705CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angelo Bella
    • 1
  • Michael Shaw
    • 1
  • Emiliana De Santis
    • 1
  • Maxim G. Ryadnov
    • 1
  1. 1.National Physical LaboratoryMiddlesexUK

Personalised recommendations