Solid-State NMR Studies of Amyloid Materials: A Protocol to Define an Atomic Model of Aβ(1–42) in Amyloid Fibrils

  • Yiling Xiao
  • Dan McElheny
  • Minako Hoshi
  • Yoshitaka Ishii
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Intense efforts have been made to understand the molecular structures of misfolded amyloid β (Aβ) in order to gain insight into the pathological mechanism of Alzheimer’s disease. Solid-state NMR spectroscopy (SSNMR) is considered a primary tool for elucidating the structures of insoluble and noncrystalline amyloid fibrils and other amyloid assemblies. In this chapter, we describe a detailed protocol to obtain the first atomic model of the 42-residue human Aβ peptide Aβ(1–42) in structurally homogeneous amyloid fibrils from our recent SSNMR study (Nat Struct Mol Biol 22:499–505, 2015). Despite great biological and clinical interest in Aβ(1–42) fibrils, their structural details have been long-elusive until this study. The protocol is divided into four sections. First, the solid-phase peptide synthesis (SPPS) and purification of monomeric Aβ(1–42) is described. We illustrate a controlled incubation method to prompt misfolding of Aβ(1–42) into homogeneous amyloid fibrils in an aqueous solution with fragmented Aβ(1–42) fibrils as seeds. Next, we detail analysis of Aβ(1–42) fibrils by SSNMR to obtain structural restraints. Finally, we describe methods to construct atomic models of Aβ(1–42) fibrils based on SSNMR results through two-stage molecular dynamics calculations.

Key words

Aβ(1–42) Amyloid fibrils Seeding method SSNMR Structure Atomic model 



This work was supported by the National Institutes of Health R01 and U01 programs (GM 098033) and Alzheimer’s Association IIRG grant (08-91256) for YI.


  1. 1.
    Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53(5):438–447CrossRefGoogle Scholar
  2. 2.
    Lorenzo A, Yankner B (1996) Amyloid fibril toxicity in Alzheimer’s disease and diabetesa. Ann N Y Acad Sci 777(1):89–95CrossRefGoogle Scholar
  3. 3.
    Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci 91(25):12243–12247CrossRefGoogle Scholar
  4. 4.
    Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s β-amyloid, Aβ(1−40), by solid-state NMR spectroscopy. J Am Chem Soc 127(39):13472–13473CrossRefGoogle Scholar
  5. 5.
    Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci 100(11):6370–6375CrossRefGoogle Scholar
  6. 6.
    Noguchi A, Matsumura S, Dezawa M, Tada M, Yanazawa M, Ito A, Akioka M, Kikuchi S, Sato M, Ideno S, Noda M, Fukunari A, Muramatsu S-i, Itokazu Y, Sato K, Takahashi H, Teplow DB, Nabeshima Y-i, Kakita A, Imahori K, Hoshi M (2009) Isolation and characterization of patient-derived, toxic, high mass amyloid β-protein (Aβ) assembly from Alzheimer disease brains. J Biol Chem 284(47):32895–32905CrossRefGoogle Scholar
  7. 7.
    Parthasarathy S, Inoue M, Xiao Y, Matsumura Y, Nabeshima Y-i, Hoshi M, Ishii Y (2015) Structural insight into an Alzheimer’s brain-derived spherical assembly of amyloid β by solid-state NMR. J Am Chem Soc 137(20):6480–6483CrossRefGoogle Scholar
  8. 8.
    Olofsson A, Sauer-Eriksson AE, Öhman A (2006) The solvent protection of Alzheimer amyloid-β-(1–42) fibrils as determined by solution NMR spectroscopy. J Biol Chem 281(1):477–483CrossRefGoogle Scholar
  9. 9.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567CrossRefGoogle Scholar
  10. 10.
    Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M, Bitner RS, Harlan J (2005) Globular amyloid β-peptide1− 42 oligomer− a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95(3):834–847CrossRefGoogle Scholar
  11. 11.
    Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T (2003) Neurotoxicity and physicochemical properties of Aβ mutant peptides from cerebral amyloid angiopathy. J Biol Chem 278(46):46179–46187CrossRefGoogle Scholar
  12. 12.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766CrossRefGoogle Scholar
  13. 13.
    Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, Holtzman DM (2005) Human apolipoprotein E4 alters the amyloid-β 40: 42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 25(11):2803–2810CrossRefGoogle Scholar
  14. 14.
    Gravina SA, Ho L, Eckman CB, Long KE, Otvos L Jr, Younkin LH, Suzuki N, Younkin SG (1995) Amyloid β protein (Aβ) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42(43). J Biol Chem 270(13):7013–7016CrossRefGoogle Scholar
  15. 15.
    Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A-beta-42(43) and A-beta-40 in senile plaques with end-specific A-beta monoclonals—evidence that an initially deposited species is A-beta-42(43). Neuron 13(1):45–53CrossRefGoogle Scholar
  16. 16.
    Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van den Haute C, Mercken M, Moechars D, Laenen I, Kuiperi C (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 157(4):1283–1298CrossRefGoogle Scholar
  17. 17.
    Burdick D, Kosmoski J, Knauer MF, Glabe CG (1997) Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer’s amyloid peptide, Aβ(1–42), in differentiated PC12 cells. Brain Res 746(1–2):275–284CrossRefGoogle Scholar
  18. 18.
    Mehta PD, Pirttilä T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM (2000) Plasma and cerebrospinal fluid levels of amyloid β proteins 1–40 and 1–42 in Alzheimer disease. Arch Neurol 57(1):100–105CrossRefGoogle Scholar
  19. 19.
    Suzuki N, Iwatsubo T, Odaka A, Ishibashi Y, Kitada C, Ihara Y (1994) High tissue content of soluble beta 1-40 is linked to cerebral amyloid angiopathy. Am J Pathol 145(2):452PubMedPubMedCentralGoogle Scholar
  20. 20.
    Seppälä TT, Herukka S-K, Hänninen T, Tervo S, Hallikainen M, Soininen H, Pirttilä T (2010) Plasma Aβ42 and Aβ40 as markers of cognitive change in follow-up: a prospective, longitudinal, population-based cohort study. J Neurol Neurosurg Psychiatry 81(10):1123–1127CrossRefGoogle Scholar
  21. 21.
    Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, Ball MJ (1993) beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci 90(22):10836–10840CrossRefGoogle Scholar
  22. 22.
    van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MMB (2006) Plasma A beta(1-40) and A beta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 5(8):655–660CrossRefGoogle Scholar
  23. 23.
    Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik RJ, Smith GE, Younkin LH, Petersen RC, Younkin SG (2007) Association of low plasma A beta 42/A beta 40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch Neurol 64(3):354–362CrossRefGoogle Scholar
  24. 24.
    Davis J, VanNostrand WE (1996) Enhanced pathologic properties of Dutch-type mutant amyloid beta-protein. Proc Natl Acad Sci U S A 93(7):2996–3000CrossRefGoogle Scholar
  25. 25.
    Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307(5707):262–265CrossRefGoogle Scholar
  26. 26.
    Lu J-X, Qiang W, Yau W-M, Schwieters Charles D, Meredith Stephen C, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268CrossRefGoogle Scholar
  27. 27.
    Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc Natl Acad Sci U S A 102(48):17342–17347CrossRefGoogle Scholar
  28. 28.
    Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45(2):498–512CrossRefGoogle Scholar
  29. 29.
    Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci 105(47):18349–18354CrossRefGoogle Scholar
  30. 30.
    Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A (2011) A new structural model of Aβ40 fibrils. J Am Chem Soc 133(40):16013–16022CrossRefGoogle Scholar
  31. 31.
    Masuda Y, Uemura S, Ohashi R, Nakanishi A, Takegoshi K, Shimizu T, Shirasawa T, Irie K (2009) Identification of Physiological and Toxic Conformations in Aβ42 Aggregates. Chembiochem 10(2):287–295CrossRefGoogle Scholar
  32. 32.
    Schmidt M, Sachse C, Richter W, Xu C, Fändrich M, Grigorieff N (2009) Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci 106(47):19813–19818CrossRefGoogle Scholar
  33. 33.
    Lopez del Amo JM, Schmidt M, Fink U, Dasari M, Faendrich M, Reif B (2012) An asymmetric dimer as the basic subunit in Alzheimer’s disease amyloid beta fibrils. Angewandte Chemie-International Edition 51(25):6136–6139CrossRefGoogle Scholar
  34. 34.
    Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890CrossRefGoogle Scholar
  35. 35.
    Hyung S-J, DeToma AS, Brender JR, Lee S, Vivekanandan S, Kochi A, Choi J-S, Ramamoorthy A, Ruotolo BT, Lim MH (2013) Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-beta species. Proc Natl Acad Sci U S A 110(10):3743–3748CrossRefGoogle Scholar
  36. 36.
    Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480(7376):268–U161CrossRefGoogle Scholar
  37. 37.
    Sarkar B, Mithu VS, Chandra B, Mandal A, Chandrakesan M, Bhowmik D, Madhu PK, Maiti S (2014) Significant structural differences between transient amyloid-β oligomers and less-toxic fibrils in regions known to harbor familial Alzheimer’s mutations. Angew Chem Int Ed 53(27):6888–6892CrossRefGoogle Scholar
  38. 38.
    del Amo JML, Fink U, Dasari M, Grelle G, Wanker EE, Bieschke J, Reif B (2012) Structural Properties of EGCG-Induced, Nontoxic Alzheimer’s Disease A beta Oligomers. J Mol Biol 421(4–5):517–524Google Scholar
  39. 39.
    Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39(01):1–55CrossRefGoogle Scholar
  40. 40.
    Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440(7086):959–962CrossRefGoogle Scholar
  41. 41.
    Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core. Science 319(5869):1523–1526CrossRefGoogle Scholar
  42. 42.
    Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281):689–U127CrossRefGoogle Scholar
  43. 43.
    Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Atomic model of the type III secretion system needle. Nature 486(7402):276–279PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ma B, Nussinov R (2011) Polymorphic triple beta-sheet structures contribute to amide hydrogen/deuterium (H/D) exchange protection in the Alzheimer Amyloid beta 42 peptide. J Biol Chem 286(39):34244–34253CrossRefGoogle Scholar
  45. 45.
    Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R, Ishii Y (2015) A[beta](1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505CrossRefGoogle Scholar
  46. 46.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a Multidimensional Spectral Processing System Based on Unix Pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  47. 47.
    Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR Structure Determination with Automated NOE Assignment Using the New Software CANDID and the Torsion Angle Dynamics Algorithm DYANA. J Mol Biol 319(1):209–227CrossRefGoogle Scholar
  48. 48.
    Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178(2):248–282CrossRefGoogle Scholar
  49. 49.
    Case D, Darden T, Cheatham TE III, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2012) AMBER 12. University of California, San FranciscoGoogle Scholar
  50. 50.
    Han B, Liu Y, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50(1):43–57CrossRefGoogle Scholar
  51. 51.
    Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502CrossRefGoogle Scholar
  52. 52.
    Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486CrossRefGoogle Scholar
  53. 53.
    Ishii Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114(19):8473–8483CrossRefGoogle Scholar
  54. 54.
    Takegoshi K, Nakamura S, Terao T (2003) C-13-H-1 dipolar-driven C-13-C-13 recoupling without C-13 rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118(5):2325–2341CrossRefGoogle Scholar
  55. 55.
    Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241CrossRefGoogle Scholar
  56. 56.
    Ishii Y, Balbach JJ, Tycko R (2001) Measurement of dipole-coupled lineshapes in a many-spin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning. Chem Phys 266(2–3):231–236CrossRefGoogle Scholar
  57. 57.
    Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A 99(8):5271–5276CrossRefGoogle Scholar
  58. 58.
    Tsui V, Case DA (2000) Molecular dynamics simulations of nucleic acids with a generalized born solvation model. J Am Chem Soc 122(11):2489–2498CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yiling Xiao
    • 1
  • Dan McElheny
    • 1
  • Minako Hoshi
    • 2
    • 3
  • Yoshitaka Ishii
    • 1
    • 4
  1. 1.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Institute of Biomedical Research and Innovation, FBRIKobeJapan
  3. 3.Department of Anatomy and Developmental Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
  4. 4.School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations