Biogelx: Cell Culture on Self-Assembling Peptide Gels

  • Mhairi M. Harper
  • Michael L. Connolly
  • Laura Goldie
  • Eleanore J. Irvine
  • Joshua E. Shaw
  • Vineetha Jayawarna
  • Stephen M. Richardson
  • Matthew J. Dalby
  • David Lightbody
  • Rein V. Ulijn
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.

Key words

Hydrogels Self-assembly Cell culture Biomaterials 

References

  1. 1.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRefGoogle Scholar
  2. 2.
    Dankers PYW, Harmsen MC, Brouwer LA, Van Luyn MJA, Meijer EW (2005) A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat Mater 4:568–574CrossRefGoogle Scholar
  3. 3.
    Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600CrossRefGoogle Scholar
  4. 4.
    Gelain F, Bottai D, Vescovi A, Zhang SG (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119CrossRefGoogle Scholar
  5. 5.
    Collier JH (2008) Modular self-assembling biomaterials for directing cellular responses. Soft Matter 4:2310–2315CrossRefGoogle Scholar
  6. 6.
    Webber MJ, Appel EA, Meijer EW, Langer R (2016) Supramolecular biomaterials. Nat Mater 15:13–26CrossRefGoogle Scholar
  7. 7.
    Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319CrossRefGoogle Scholar
  8. 8.
    Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835CrossRefGoogle Scholar
  9. 9.
    Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90:3334–3338CrossRefGoogle Scholar
  10. 10.
    Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–1688CrossRefGoogle Scholar
  11. 11.
    Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. RSC Adv 3:9117–9149CrossRefGoogle Scholar
  12. 12.
    Caliari SR, Burdich JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414CrossRefGoogle Scholar
  13. 13.
    Seow WY, Hauser CAE (2014) Short to ultrashort peptide hydrogels for biomedical uses. Mater Today 17(8):381–388CrossRefGoogle Scholar
  14. 14.
    Vegners R, Shestakova I, Kalvinsh I, Ezzell RM, Janmey PA (1995) Use of a gel-forming dipeptide derivative as a carrier for antigen presentation. J Pept Sci 1:371–378CrossRefGoogle Scholar
  15. 15.
    Orbach R, Alder-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10(9):2646–2651CrossRefGoogle Scholar
  16. 16.
    Babu SS, Praveen VK, Ajayaghosh A (2014) Functional π-gelators and their applications. Chem Rev 144(4):1923–2129Google Scholar
  17. 17.
    Alakpa EV, Jayawarna V, Lampel A, Burgess KV, West CC, Bakker SCJ, Roy S, Javid N, Fleming S, Lamprou DA, Yang J, Miller A, Urquhart AJ, Frederix PWJM, Hunt NT, Péault B, Ulijn RV, Dalby MJ (2016) Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem 1:1–22CrossRefGoogle Scholar
  18. 18.
    Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43:8150–8177CrossRefGoogle Scholar
  19. 19.
    Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A, Gough JE, Ulijn RV (2006) Nano-structured hydrogels for 3D cell culture through self-assembly of Fmoc-dipeptides. Adv Mater 18:611–614CrossRefGoogle Scholar
  20. 20.
    Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, Self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18:1365–1370CrossRefGoogle Scholar
  21. 21.
    Cheng G, Castelletto V, Jones RR, Connona CJ, Hamley IW (2010) Hydrogelation of self-assembling RGD-based peptides. Soft Matter 7:1326–1333CrossRefGoogle Scholar
  22. 22.
    Yang ZM, Liang GL, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128:3038–3043CrossRefGoogle Scholar
  23. 23.
    Jayawarna V, Richardson SM, Hirst A, Hodson NW, Saiani A, Gough JE, Ulijn RV (2009) Introducing chemical functionality in fmoc-peptide gels for cell culture. Acta Biomater 5:934–943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mhairi M. Harper
    • 1
  • Michael L. Connolly
    • 1
  • Laura Goldie
    • 1
  • Eleanore J. Irvine
    • 1
  • Joshua E. Shaw
    • 2
  • Vineetha Jayawarna
    • 1
  • Stephen M. Richardson
    • 2
  • Matthew J. Dalby
    • 3
  • David Lightbody
    • 1
  • Rein V. Ulijn
    • 4
  1. 1.Biogelx Ltd, Biocity ScotlandLanarkshireUK
  2. 2.Faculty of Biology, Medicine and Health, Division of Cell Matrix Biology and Regenerative MedicineSchool of Biological Sciences, University of ManchesterManchesterUK
  3. 3.Centre for Cell Engineering, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, Joseph Black Building, University of GlasgowGlasgowUK
  4. 4.CUNY Advanced Science Research Center (ASRC), City University of New YorkNew YorkUSA

Personalised recommendations