Microwave-Assisted Synthesis and Immunological Evaluation of Self-Assembling Peptide Vaccines

  • C. Brent Chesson
  • Rojelio Elias Alvarado
  • Jai S. Rudra
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

Self-assembling peptides spontaneously associate into functional supramolecular scaffolds, which have found numerous biomedical applications. These molecular assemblies have applications in nerve regeneration, wound healing, and both prophylactic and therapeutic vaccination. They can also be useful tools for proliferation assays, sustained culture of difficult cell lines, or activation of cell lines for immunoassays. This protocol will describe the basic peptide synthesis and purification of model self-assembling peptide immunogen and methods for vaccinating mice, collecting lymph nodes, and stimulating cells ex vivo.

Key words

Self-assembling peptides Vaccine Nanofiber 

References

  1. 1.
    Mora-Solano C, Collier JH (2014) Engaging adaptive immunity with biomaterials. J Mater Chem B Mater Biol Med 2(17):2409–2421CrossRefGoogle Scholar
  2. 2.
    Khan TA, Reddy ST (2014) Immunological principles regulating immunomodulation with biomaterials. Acta Biomater 10(4):1720–1727CrossRefGoogle Scholar
  3. 3.
    Petkau-Milroy K, Brunsveld L (2013) Supramolecular chemical biology; bioactive synthetic self-assemblies. Org Biomol Chem 11(2):219–232CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bowerman CJ, Nilsson BL (2012) Self-assembly of amphipathic beta-sheet peptides: insights and applications. Biopolymers 98(3):169–184CrossRefGoogle Scholar
  5. 5.
    Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2(10):822–835CrossRefGoogle Scholar
  6. 6.
    Jung JP, Gasiorowski JZ, Collier JH (2010) Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers 94(1):49–59CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rudra JS, Tian YF, Jung JP, Collier JH (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A 107(2):622–627CrossRefGoogle Scholar
  8. 8.
    Rudra JS, Tripathi PK, Hildeman DA, Jung JP, Collier JH (2010) Immune responses to coiled coil supramolecular biomaterials. Biomaterials 31(32):8475–8483CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hudalla GA, Modica JA, Tian YF, Rudra JS, Chong AS, Sun T, Mrksich M, Collier JH (2013) A self-adjuvanting supramolecular vaccine carrying a folded protein antigen. Adv Healthc Mater 2(8):1114–1119CrossRefGoogle Scholar
  10. 10.
    Pompano RR, Chen JJ, Verbus EA, Han HF, Fridman A, McNeely T, Collier JH, Chong AS (2014) Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+helper T cell and antibody outputs. Adv Healthc Mater 3(11):1898–1908CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li XD, Galliher-Beckley A, Huang HZ, Sun XZ, Shi JS (2013) Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus. Vaccine 31(41):4508–4515CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang HM, Luo Z, Wang YCZ, He T, Yang CB, Ren CH, Ma LS, Gong CY, Li XY, Yang ZM (2016) Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Adv Funct Mater 26(11):1822–1829CrossRefGoogle Scholar
  13. 13.
    Grenfell RFQ, Shollenberger LM, Samli EF, Harn DA (2015) Vaccine self-assembling immune matrix is a new delivery platform that enhances immune responses to recombinant HBsAg in mice. Clin Vaccine Immunol 22(3):336–343CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Snook JD, Chesson CB, Peniche AG, Dann SM, Paulucci A, Pinchuk IV, Rudra JS (2016) Peptide nanofiber-CaCO3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. J Mater Chem B 4(9):1640–1649CrossRefGoogle Scholar
  15. 15.
    Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH, Nussenzweig V, Collier JH (2012) Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33(27):6476–6484CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang ZH, Shi L, Ma JW, Sun ZY, Cai H, Chen YX, Zhao YF, Li YM (2012) A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J Am Chem Soc 134(21):8730–8733CrossRefGoogle Scholar
  17. 17.
    Chesson CB, Huelsmann EJ, Lacek AT, Kohlhapp FJ, Webb MF, Nabatiyan A, Zloza A, Rudra JS (2014) Antigenic peptide nanofibers elicit adjuvant-free CD8(+) T cell responses. Vaccine 32(10):1174–1180CrossRefPubMedGoogle Scholar
  18. 18.
    Rudra JS, Ding Y, Neelakantan H, Ding C, Appavu R, Stutz S, Snook JD, Chen H, Cunningham KA, Zhou J (2016) Suppression of cocaine-evoked hyperactivity by self-adjuvanting and multivalent peptide nanofiber vaccines. ACS Chem Neurosci 7(5):546–552CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Brent Chesson
    • 1
    • 2
  • Rojelio Elias Alvarado
    • 1
  • Jai S. Rudra
    • 1
    • 2
  1. 1.Department of Pharmacology & ToxicologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Sealy Center for Vaccine DevelopmentUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations