Programmable Fabrication of Multilayer Collagen Nanosheets of Defined Composition

  • Tao Jiang
  • Vincent P. Conticello
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)


Two-dimensional nanostructures offer significant promise as components for the construction of functional biomaterials. However, the controllable fabrication of these structures remains a challenge. Ideally, one desires to control the composition, structure, and surface functionality of the resultant materials with precision, in order to tailor properties for a particular application and minimize the unintended side effects. We recently reported the synthesis of triple-layer nanosheets from template-driven assembly of a negatively charged collagen-mimetic peptide CP on a preassembled nanosheet of a positively charged collagen-mimetic peptide CP + [1]. This process enabled the fabrication of nanosheets of defined composition, internal structure, and surface chemistry using a modified layer-by-layer approach. Herein, we describe the synthesis and purification procedures for these two 45-mer peptides, CP + and CP , and guidelines for the directed assembly of triple-layer structures, along with routine methods of structural analysis.

Key words

Peptides Self-assembly Collagen Nanosheets Triple helix 



We acknowledge the National Science Foundation grant CHE-1012620 and CHE-1412580 for support.


  1. 1.
    Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP (2015) Rational design of multilayer collagen nanosheets with compositional and structural control. J Am Chem Soc 137:7793–7802CrossRefPubMedGoogle Scholar
  2. 2.
    Pires MM, Chmielewski J (2009) Self-assembly of collagen peptides into microflorettes via metal coordination. J Am Chem Soc 131:2706–2712CrossRefPubMedGoogle Scholar
  3. 3.
    Przybyla DE, Rubert Perez CM, Gleaton J, Nandwana V, Chmielewski J (2013) Hierarchical assembly of collagen peptide triple helices into curved disks and metal ion-promoted hollow spheres. J Am Chem Soc 135:3418–3422CrossRefPubMedGoogle Scholar
  4. 4.
    Hsu W, Chen Y-L, Horng J-C (2012) Promoting self-assembly of collagen-related peptides into various higher-order structures by metal-histidine coordination. Langmuir 28:3194–3199CrossRefPubMedGoogle Scholar
  5. 5.
    Kotch FW, Raines RT (2006) Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci U S A 103:3028–3033CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reimer AE, Feher KM, Hernandez D, Slowinska K (2012) Self-assembly of collagen peptides into hollow microtubules. J Mater Chem 22:7701–7703CrossRefGoogle Scholar
  7. 7.
    Luo J, Tong YW (2011) Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber. ACS Nano 5:7739–7747CrossRefPubMedGoogle Scholar
  8. 8.
    Chen C-C, Hsu W, Kao T-C, Horng J-C (2011) Self-assembly of short collagen-related peptides into fibrils via cation-pi interactions. Biochemistry 50:2381–2383CrossRefPubMedGoogle Scholar
  9. 9.
    Kar K, Ibrar S, Nanda V, Getz TM, Kunapuli SP, Brodsky B (2009) Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 48:7959–7968CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Przybyla DE, Chmielewski J (2008) Metal-triggered radial self-assembly of collagen peptide fibers. J Am Chem Soc 130:12610–12611CrossRefPubMedGoogle Scholar
  11. 11.
    Cejas MA, Kinnney WA, Chen C, Vinter JG, Almond HR, Balss KM, Maryanoff CA, Schmidt U, Breslav M, Mahan A, Lacy E, Maryanoff BE (2008) Thrombogenic collagen-mimetic peptides: self-assembly of triple helix-based fibrils driven by hydrophobic interactions. Proc Natl Acad Sci U S A 105:8513–8518CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rele S, Song YH, Apkarian RP, Qu Z, Conticello VP, Chaikof EL (2007) D-periodic collagen-mimetic microfibers. J Am Chem Soc 129:14780–14787CrossRefPubMedGoogle Scholar
  13. 13.
    Sarkar B, O’Leary LE, Hartgerink JD (2014) Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J Am Chem Soc 136:14417–14424CrossRefPubMedGoogle Scholar
  14. 14.
    Xu F, Khan IJ, McGuinness K, Parmar AS, Silva T, Murthy NS, Nanda V (2013) Self-assembly of left- and right-handed molecular screws. J Am Chem Soc 135:18762–18765CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Matsui S, Yamazaki CM, Koide T (2012) Surface-modifiable free-floating films formed by multiway connection of collagen-like triple-helical peptides. Macromol Rapid Commun 33:911–915CrossRefPubMedGoogle Scholar
  16. 16.
    Przybyla DE, Chmielewski J (2010) Metal-triggered collagen peptide disk formation. J Am Chem Soc 132:7866–7867CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    O’Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD (2011) Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 3:821–828CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yamazaki CM, Asada S, Kitagawa K, Koide T (2008) Artificial collagen gels via self-assembly of de novo designed peptides. Biopolymers 90:816–823CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rubert Perez CM, Rank LA, Chmielewski J (2014) Tuning the thermosensitive properties of hybrid collagen peptide-polymer hydrogels. Chem Commun 50(60):8174–8176CrossRefGoogle Scholar
  20. 20.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jiang T, Xu C, Liu Y, Liu Z, Wall JS, Zuo X, Lian T, Salaita K, Ni C, Pochan D, Conticello VP (2014) Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136:4300–4308CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang T, Xu C, Zuo X, Conticello VP (2014) Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew Chem Int Ed 53:8367–8371CrossRefGoogle Scholar
  23. 23.
    Carpino LA, Han GY (1972) 9-Fluorenylmethoxycarbonyl Amino-Protecting Group. J Org Chem 37:3404–3409CrossRefGoogle Scholar
  24. 24.
    Collins JM, Porter KA, Singh SK, Vanier GS (2014) High-efficiency solid phase peptide synthesis (HE-SPPS). Org Lett 16:940–943CrossRefPubMedGoogle Scholar
  25. 25.
    Marek P, Woys AM, Sutton K, Zanni MT, Raleigh DP (2010) Efficient microwave-assisted synthesis of human islet amyloid polypeptide designed to facilitate the specific incorporation of labeled amino acids. Org Lett 12:4848–4851CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations