Advertisement

Synthesis of Mikto-Arm Star Peptide Conjugates

  • Jin Mo Koo
  • Hao Su
  • Yi-An Lin
  • Honggang Cui
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1777)

Abstract

Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

Key words

Mikto-arm Peptide conjugate Amino acids Fmoc-solid phase synthesis HPLC Amphiphile 

Notes

Acknowledgments

This work was supported by the National Science Foundation (DMR/1255281, DMR/1506937, and CHE/1412985) and the National Institutes of Health (NIH/R21CA191740). We acknowledge the JHU Department of Chemistry for the use of mass spectrometer (NSF CHE-0840463).

References

  1. 1.
    Karaborni S, Esselink K, Hilbers PAJ, Smit B, Karthauser J, Vanos NM, Zana R (1994) Simulating the self-assembly of gemini (Dimeric) surfactants. Science 266(5183):254–256CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13(1):238–252CrossRefGoogle Scholar
  3. 3.
    Wong GCL, Tang JX, Lin A, Li YL, Janmey PA, Safinya CR (2000) Hierarchical self-assembly of F-actin and cationic lipid complexes: stacked three-layer tubule networks. Science 288(5473):2035–2039CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K, Nummelin S, Ropponen J (2010) Self-assembly of janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981):1009–1014CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pochan DJ, Chen ZY, Cui HG, Hales K, Qi K, Wooley KL (2004) Toroidal triblock copolymer assemblies. Science 306(5693):94–97CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang LF, Eisenberg A (1995) Multiple morphologies of crew-cut aggregates of polystyrene-B-poly(Acrylic Acid) block-copolymers. Science 268(5218):1728–1731CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688CrossRefGoogle Scholar
  8. 8.
    Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC, Stupp SI (2006) Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res A 78A(1):157–167CrossRefGoogle Scholar
  9. 9.
    Webber MJ, Kessler JA, Stupp SI (2010) Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 267(1):71–88CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355CrossRefGoogle Scholar
  11. 11.
    Black M, Trent A, Kostenko Y, Lee JS, Olive C, Tirrell M (2012) Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv Mater 24(28):3845–3849CrossRefPubMedGoogle Scholar
  12. 12.
    Guler MO, Claussen RC, Stupp SI (2005) Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers. J Mater Chem 15(42):4507–4512CrossRefGoogle Scholar
  13. 13.
    Soukasene S, Toft DJ, Moyer TJ, Lu HM, Lee HK, Standley SM, Cryns VL, Stupp SI (2011) Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano 5(11):9113–9121CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheetham AG, Zhang P, Lin YA, Lin R, Cui H (2014) Synthesis and self-assembly of a mikto-arm star dual drug amphiphile containing both paclitaxel and camptothecin. J Mater Chem B 2(42):7316–7326CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao H, Matyjaszewski K (2007) Arm-first method as a simple and general method for synthesis of miktoarm star copolymers. J Am Chem Soc 129(38):11828–11834CrossRefPubMedGoogle Scholar
  16. 16.
    Khanna K, Varshney S, Kakkar A (2010) Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polym Chem 1(8):1171–1185CrossRefGoogle Scholar
  17. 17.
    Ludwigs S, Boker A, Voronov A, Rehse N, Magerle R, Krausch G (2003) Self-assembly of functional nanostructures from ABC triblock copolymers. Nat Mater 2(11):744–747CrossRefPubMedGoogle Scholar
  18. 18.
    Okamoto S, Hasegawa H, Hashimoto T, Fujimoto T, Zhang HM, Kazama T, Takano A, Isono Y (1997) Morphology of model three-component three-arm star-shaped copolymers. Polymer 38(21):5275–5281CrossRefGoogle Scholar
  19. 19.
    Li ZB, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP (2004) Multicompartment micelles from ABC miktoarm stars in water. Science 306(5693):98–101CrossRefPubMedGoogle Scholar
  20. 20.
    Li ZB, Hillmyer MA, Lodge TP (2006) Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers. Langmuir 22(22):9409–9417CrossRefPubMedGoogle Scholar
  21. 21.
    Li ZB, Hillmyer MA, Lodge TP (2006) Control of structure in multicompartment micelles by blending mu-ABC star terpolymers with AB diblock copolymers. Macromolecules 39(2):765–771CrossRefGoogle Scholar
  22. 22.
    Li ZB, Hillmyer MA, Lodge TP (2006) Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles. Nano Lett 6(6):1245–1249CrossRefPubMedGoogle Scholar
  23. 23.
    Lin YA, Ou YC, Cheetham AG, Cui HG (2013) Supramolecular polymers formed by ABC miktoarm star peptides. ACS Macro Lett 2(12):1088–1094CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology (INBT)Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Oncology and Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations