Dual Surface Modification of Genome-Free MS2 Capsids for Delivery Applications

  • Ioana L. Aanei
  • Matthew B. FrancisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1776)


One of the hallmarks of virus-like particles (VLPs) is the fact that they possess distinguishable interior and exterior surfaces. Taking advantage of our knowledge of the amino acid location from X-ray crystal structures, we have developed a series of synthetic modifications of the MS2 bacteriophage viral capsid, including small molecule and polymer attachment, as well as conjugation with peptides, DNA and other proteins. These constructs have found applications in nanomaterial fabrication and as delivery vehicles with therapeutic potential. Importantly, the dual-modification strategies described herein could be extended to other VLP systems.

Key words

MS2 bacteriophage Site-specific modification Virus-like particles Delivery vehicle Bioconjugation Drugs Polymers Aptamers Antibodies 



This work was supported by the Genentech Fellowship, the DOD Breast Cancer Research Program grant W81XWH-14-0400, and the NIH grant 5R21EB018055-02.


  1. 1.
    Wu W, Hsiao SC, Carrico ZM, Francis MB (2009) Genome-free viral capsids as multivalent carriers for taxol delivery. Angew Chem Int Ed 48:9493–9497CrossRefGoogle Scholar
  2. 2.
    Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira J do C, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5:5729–5745CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Obermeyer AC, Capehart SL, Jarman JB, Francis MB (2014) Multivalent viral capsids with internal cargo for fibrin imaging. PLoS One 9(6):e100678. Scholar
  4. 4.
    Hermanson GT (2008) Bioconjugate techniques. Academic Press, CambridgeGoogle Scholar
  5. 5.
    Tilley SD, Joshi NS, Francis MB (2009) Proteins: chemistry and chemical reactivity. In: Wiley encyclopedia of chemical biology, vol 4. John Wiley & Sons, Inc., San Francisco, pp 158–174Google Scholar
  6. 6.
    Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884CrossRefPubMedGoogle Scholar
  7. 7.
    Antos JM, Francis MB (2004) Selective tryptophan modification with rhodium carbenoids in aqueous solution. J Am Chem Soc 126:10256–10257CrossRefPubMedGoogle Scholar
  8. 8.
    Seim KL, Obermeyer AC, Francis MB (2011) Oxidative modification of native protein residues using cerium(IV) ammonium nitrate. J Am Chem Soc 7:876–884Google Scholar
  9. 9.
    Seim KL (2013) Development of oxidative bioconjugation methodology for the site-selective modification of the electron rich aromatic amino acids. Dissertation, University of California, BerkeleyGoogle Scholar
  10. 10.
    Hooker JM, Esser-Kahn AP, Francis MB (2006) Modification of aniline containing proteins using an oxidative coupling strategy. J Am Chem Soc 128:15558–15559CrossRefPubMedGoogle Scholar
  11. 11.
    Joshi NS, Whitaker LR, Francis MB (2004) Three-component Mannich type reaction for selective tyrosine bioconjugation. J Am Chem Soc 126:15942–15943CrossRefPubMedGoogle Scholar
  12. 12.
    Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using p-allylpalladium complexes. J Am Chem Soc 128:1080–1081CrossRefPubMedGoogle Scholar
  13. 13.
    Witus LS, Netirojjanakul C, Palla KS, Muehl EM, Weng CH, Iavarone AT, Francis MB (2013) Site-specific protein transamination using N-methylpyridinium-4-carboxaldehyde. J Am Chem Soc 135:17223–17229CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dixon HBF, Fields R (1972) Specific modification of NH2-terminal residues by transamination. Methods Enzymol 25:409–419CrossRefPubMedGoogle Scholar
  15. 15.
    Palla KS, Witus LS, Mackenzie KJ, Netirojjanakul C, Francis MB (2014) Optimization and expansion of a site selective N-methylpyridinium-4-carboxaldehyde mediated transamination for bacterially expressed proteins. J Am Chem Soc 137:1123–1129CrossRefGoogle Scholar
  16. 16.
    MacDonald JI, Munch HK, Moore T, Francis MB (2015) One-step site-specific modification of native proteins with 2-pyridinecarboxaldehydes. Nat Chem Biol 11:326–331CrossRefPubMedGoogle Scholar
  17. 17.
    Obermeyer AC, Jarman JB, Francis MB (2014) N-terminal modification of proteins with o-aminophenols. J Am Chem Soc 136:9572–9579CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Carrico ZM, Romanini DW, Mehl RA, Francis MB (2008) Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem Commun 10:1205–1207CrossRefGoogle Scholar
  19. 19.
    Behrens CR, Hooker JM, Obermeyer AC, Romanini DW, Katz EM, Francis MB (2011) Rapid chemoselective bioconjugation through the oxidative coupling of anilines and aminophenols. J Am Chem Soc 133:16398–16401CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Obermeyer AC, Jarman JB, Netirojjanakul C, El Muslemany K, Francis MB (2013) Mild bioconjugation through the oxidative coupling of ortho-aminophenols and anilines with ferricyanide. Angew Chem Int Ed 53:1057–1061CrossRefGoogle Scholar
  21. 21.
    ElSohly AM, Francis MB (2015) Development of oxidative coupling strategies for site-selective protein modification. Acc Chem Res 48:1971–1978CrossRefPubMedGoogle Scholar
  22. 22.
    Tong GJ, Hsiao SC, Carrico ZM, Francis MB (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131:11174–11178CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stephanopoulos N, Carrico ZM, Francis MB (2009) Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. Angew Chem Int Ed 48:9498–9502CrossRefGoogle Scholar
  24. 24.
    ElSohly AM, Netirojjanakul C, Aanei IL, Jager A, Bendall S, Farkas ME, Nolan GP, Francis MB (2015) Synthetically modified viral capsids as versatile carriers for use in antibody-based cell targeting. Bioconjug Chem 26:1590–1596CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB (2010) Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4:6014–6020CrossRefPubMedGoogle Scholar
  26. 26.
    Datta A, Hooker JM, Botta M, Francis MB, Aime S, Raymond KN (2008) High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: Nanosized MRI contrast agents. J Am Chem Soc 130:2546–2552CrossRefPubMedGoogle Scholar
  27. 27.
    Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB (2011) Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J Am Chem Soc 133:14704–14709CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Meldrum T, Seim KL, Bajaj VS, Palaniappan KK, Wu W, Francis MB, Wemmer DE, Pines A (2010) A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. J Am Chem Soc 132:5936–5937CrossRefPubMedGoogle Scholar
  29. 29.
    Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST, O’Neil JP, Francis MB (2013) PET imaging and biodistribution of chemically modified bacteriophage MS2. Mol Pharm 10:69–76CrossRefPubMedGoogle Scholar
  30. 30.
    Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719CrossRefPubMedGoogle Scholar
  31. 31.
    Kovacs EW, Hooker JM, Romanini DW, Holder PG, Berry KE, Francis MB (2007) Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug Chem 18:1140–1147CrossRefPubMedGoogle Scholar
  32. 32.
    Mehl RA, Anderson JC, Santoro SW, Wan L, Martin AB, King DS, Horn DM, Schultz PG (2003) Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 125:935–939CrossRefPubMedGoogle Scholar
  33. 33.
    Amblard M, Fehrentz J-A, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33:239–254CrossRefPubMedGoogle Scholar
  34. 34.
    Finbloom JA, Han K, Aanei IL, Hartman EC, Finley DT, Dedeo MT, Fishman M, Downing KH, Francis MB (2016) Stable disk assemblies of a tobacco mosaic virus mutant as nanoscale scaffolds for applications in drug delivery. Bioconjug Chem 27:2480–2485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoriesBerkeleyUSA

Personalised recommendations