Skip to main content

Displaying Whole-Chain Proteins on Hepatitis B Virus Capsid-Like Particles

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

The highly immunogenic icosahedral capsid of hepatitis B virus (HBV) can be exploited as a nanoparticulate display platform for heterologous molecules. Its constituent core protein (HBc) of only ~180 amino acids spontaneously forms capsid-like particles (CLPs) even in E. coli. The immunodominant c/e1 epitope in the center of the HBc primary sequence comprises a solvent-exposed loop that tolerates insertions of flexible peptide sequences yet also of selected whole proteins as long as their 3D structures fit into the two acceptor sites. This constraint is largely overcome in the SplitCore system, where the sequences flanking the loop are expressed as two separate but self-complementing entities, with the foreign sequence fixed to the carrier at one end only. Both the contiguous and the split type of CLP strongly enhance immunogenicity of the displayed sequence but also nonvaccine applications can easily be envisaged. After a brief survey of the basic features of the two HBc carrier forms, we provide conceptual guidelines concerning which foreign proteins are likely to be presentable, or not, on either carrier type. We describe generally applicable protocols for CLP expression in E. coli, cell lysis and CLP enrichment by sucrose gradient velocity sedimentation, plus a simple but meaningful gel electrophoretic assay to assess proper particle formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nassal M (2008) Hepatitis B viruses: reverse transcription a different way. Virus Res 134(1–2):235–249

    Article  CAS  PubMed  Google Scholar 

  2. Whitacre DC, Lee BO, Milich DR (2009) Use of hepadnavirus core proteins as vaccine platforms. Expert Rev Vaccines 8(11):1565–1573. https://doi.org/10.1586/erv.09.121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Birnbaum F, Nassal M (1990) Hepatitis B virus nucleocapsid assembly: primary structure requirements in the core protein. J Virol 64(7):3319–3330

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Nassal M, Rieger A, Steinau O (1992) Topological analysis of the hepatitis B virus core particle by cysteine-cysteine cross-linking. J Mol Biol 225(4):1013–1025. [pii] 0022-2836(92)90101-O

    Article  CAS  PubMed  Google Scholar 

  5. Beck J, Nassal M (2007) Hepatitis B virus replication. World J Gastroenterol 13(1):48–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Porterfield JZ, Dhason MS, Loeb DD et al (2010) Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J Virol 84(14):7174–7184. https://doi.org/10.1128/JVI.00586-10. [pii] JVI.00586-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Strods A, Ose V, Bogans J et al (2015) Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications. Sci Rep 5:11639. https://doi.org/10.1038/srep11639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Böttcher B, Wynne SA, Crowther RA (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386(6620):88–91. https://doi.org/10.1038/386088a0

    Article  PubMed  Google Scholar 

  9. Wynne SA, Crowther RA, Leslie AG (1999) The crystal structure of the human hepatitis B virus capsid. Mol Cell 3(6):771–780. [pii] S1097-2765(01)80009-5

    Article  CAS  PubMed  Google Scholar 

  10. Ceres P, Zlotnick A (2002) Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41(39):11525–11531

    Article  CAS  PubMed  Google Scholar 

  11. Kenney JM, von Bonsdorff CH, Nassal M et al (1995) Evolutionary conservation in the hepatitis B virus core structure: comparison of human and duck cores. Structure 3(10):1009–1019

    Article  CAS  PubMed  Google Scholar 

  12. Pumpens P, Grens E (2001) HBV core particles as a carrier for B cell/T cell epitopes. Intervirology 44(2–3):98–114

    Article  CAS  PubMed  Google Scholar 

  13. Ulrich R, Nassal M, Meisel H et al (1998) Core particles of hepatitis B virus as carrier for foreign epitopes. Adv Virus Res 50:141–182

    Article  CAS  PubMed  Google Scholar 

  14. Kratz PA, Böttcher B, Nassal M (1999) Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci U S A 96(5):1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skamel C, Ploss M, Böttcher B et al (2006) Hepatitis B virus capsid-like particles can display the complete, dimeric outer surface protein C and stimulate production of protective antibody responses against Borrelia burgdorferi infection. J Biol Chem 281(25):17474–17481. https://doi.org/10.1074/jbc.M513571200. [pii]: M513571200

    Article  PubMed  CAS  Google Scholar 

  16. Kolb P, Wallich R, Nassal M (2015) Whole-chain tick saliva proteins presented on hepatitis B virus capsid-like particles induce high-titered antibodies with neutralizing potential. PLoS One 10(9):e0136180. https://doi.org/10.1371/journal.pone.0136180. [pii]: PONE-D-15-04395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nassal M, Skamel C, Vogel M et al (2008) Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: new particulate Lyme disease vaccines. Int J Med Microbiol 298(1-2):135–142. https://doi.org/10.1016/j.ijmm.2007.08.002. [pii] S1438-4221(07)00112-9

    Article  PubMed  CAS  Google Scholar 

  18. Walker A, Skamel C, Nassal M (2011) SplitCore: an exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Sci Rep 1:5. https://doi.org/10.1038/srep00005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kolb P, Nguyen TTA, Walker A et al (2015) SplitCore: advanced nanoparticulate molecular presentation platform based on the hepatitis B virus capsid. In: Khudyakov Y, Pumpens P (eds) Viral nanotechnology. CRC Press, Boca Raton, FL, pp 187–208

    Chapter  Google Scholar 

  20. Vogel M, Diez M, Eisfeld J et al (2005) In vitro assembly of mosaic hepatitis B virus capsid-like particles (CLPs): rescue into CLPs of assembly-deficient core protein fusions and FRET-suited CLPs. FEBS Lett 579(23):5211–5216. https://doi.org/10.1016/j.febslet.2005.08.044. [pii] S0014-5793(05)01042-2

    Article  PubMed  CAS  Google Scholar 

  21. Peyret H, Gehin A, Thuenemann EC et al (2015) Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One 10(4):e0120751. https://doi.org/10.1371/journal.pone.0120751. [pii] PONE-D-14-49828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Vogel M, Vorreiter J, Nassal M (2005) Quaternary structure is critical for protein display on capsid-like particles (CLPs): efficient generation of hepatitis B virus CLPs presenting monomeric but not dimeric and tetrameric fluorescent proteins. Proteins 58(2):478–488. https://doi.org/10.1002/prot.20312

    Article  PubMed  CAS  Google Scholar 

  23. Kumaran D, Eswaramoorthy S, Luft BJ et al (2001) Crystal structure of outer surface protein C (OspC) from the Lyme disease spirochete, Borrelia burgdorferi. EMBO J 20(5):971–978. https://doi.org/10.1093/emboj/20.5.971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kolb P, Vorreiter J, Habicht J et al (2015) Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli. FEBS Open Bio 5:42–55. https://doi.org/10.1016/j.fob.2014.12.002

    Article  PubMed  CAS  Google Scholar 

  26. Shental-Bechor D, Levy Y (2009) Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol 19(5):524–533. https://doi.org/10.1016/j.sbi.2009.07.002. S0959-440X(09)00098-0

    Article  PubMed  CAS  Google Scholar 

  27. Valderrama-Rincon JD, Fisher AC, Merritt JH et al (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8(5):434–436. https://doi.org/10.1038/nchembio.921. [pii] nchembio.921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bachmann MF, Zabel F (2015) Immunology of virus-like particles. In: Khudyakov Y, Pumpens P (eds) Viral nanotechnology. CRC Press, Boca Raton, FL, pp 121–128

    Chapter  Google Scholar 

  29. Li H, Dunn JJ, Luft BJ et al (1997) Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab. Proc Natl Acad Sci U S A 94(8):3584–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nassal M, Skamel C, Kratz PA et al (2005) A fusion product of the complete Borrelia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immunity similar to that seen with an effective lipidated OspA vaccine formula. Eur J Immunol 35(2):655–665. https://doi.org/10.1002/eji.200425449

    Article  PubMed  CAS  Google Scholar 

  31. Gloge F, Becker AH, Kramer G et al (2014) Co-translational mechanisms of protein maturation. Curr Opin Struct Biol 24:24–33. https://doi.org/10.1016/j.sbi.2013.11.004. [pii] S0959-440X(13)00198-X

    Article  PubMed  CAS  Google Scholar 

  32. Gualerzi CO, Pon CL (2015) Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 72(22):4341–4367. https://doi.org/10.1007/s00018-015-2010-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tuller T, Waldman YY, Kupiec M et al (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A 107(8):3645–3650. https://doi.org/10.1073/pnas.0909910107. [pii] 0909910107

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nassal M (1988) Total chemical synthesis of a gene for hepatitis B virus core protein and its functional characterization. Gene 66(2):279–294

    Article  CAS  PubMed  Google Scholar 

  35. Lu Y, Chan W, Ko BY et al (2015) Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci U S A 112(40):12360–12365. https://doi.org/10.1073/pnas.1510533112. [pii] 1510533112

    Article  CAS  Google Scholar 

  36. Rickwood D (ed) (1984) Centrifugation (2nd edition)—a practical approach, Practical approaches in biochemistry. IRL Press, Oxford

    Google Scholar 

  37. Böttcher B (2015) Electron cryomicroscopy and image reconstruction of viral nanoparticles. In: Khudyakov Y, Pumpens P (eds) Viral Nanotechnology. CRC Press, Boca Raton, FL, pp 27–60

    Chapter  Google Scholar 

  38. Serwer P, Griess GA (1999) Advances in the separation of bacteriophages and related particles. J Chromatogr B Biomed Sci Appl 722(1–2):179–190

    Article  CAS  PubMed  Google Scholar 

  39. Walker A, Skamel C, Vorreiter J et al (2008) Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J Biol Chem 283(48):33508–33515. https://doi.org/10.1074/jbc.M805211200. [pii] M805211200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414. [pii] cshperspect.a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nassal M (1992) The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol 66(7):4107–4116

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Selzer L, Kant R, Wang JC et al (2015) Hepatitis B virus core protein phosphorylation sites affect capsid stability and transient exposure of the C-terminal domain. J Biol Chem 290(47):28584–28593. https://doi.org/10.1074/jbc.M115.678441. [pii] M115.678441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22. https://doi.org/10.1038/nprot.2006.4. [pii] nprot.2006.4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory pertinent to this chapter has been supported by the Deutsche Forschungsgemeinschaft (DFG), most recently through grants NA154/9-4 and NA154/11-1.

We thank Jolanta Vorreiter and Andrea Pfister for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nassal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Heger-Stevic, J., Kolb, P., Walker, A., Nassal, M. (2018). Displaying Whole-Chain Proteins on Hepatitis B Virus Capsid-Like Particles. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics