Skip to main content

Semiconducting Hybrid Layer Fabrication Scaffolded by Virus Shells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

The formation of virus-based semiconducting hybrid thin films is a two-step process, which involves assembly of virus particles as a template layer and subsequent selective mineralization of the virus surface with inorganic nanoparticles to build a semiconducting organic–inorganic hybrid film. Here, we present the use of the convective assembly technique to obtain homogeneous and dense template monolayers of wild-type tobacco mosaic virus (wt-TMV) and the TMV mutant E50Q, of which most particles do not have detectable amounts of RNA in the protein tube. On the top of the aligned virus layer, zinc oxide (ZnO) is deposited to prepare virus–ZnO semiconducting hybrid films with controllable thickness under mild conditions of the chemical bath deposition (CBD).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76(6):066501. https://doi.org/10.1088/0034-4885/76/6/066501

    Article  PubMed  CAS  Google Scholar 

  2. Atanasova P, Weitz RT, Gerstel P, Srot V, Kopold P, van Aken PA, Burghard M, Bill J (2009) DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology 20(36):365302. https://doi.org/10.1088/0957-4484/20/36/365302

    Article  PubMed  CAS  Google Scholar 

  3. Atanasova P, Rothenstein D, Schneider JJ, Hoffmann RC, Dilfer S, Eiben S, Wege C, Jeske H, Bill J (2011) Virus-templated synthesis of ZnO nanostructures and formation of field-effect transistors. Adv Mater 23(42):4918–4922. https://doi.org/10.1002/adma.201102900

    Article  PubMed  CAS  Google Scholar 

  4. Zhou H, Fan TX, Han T, Li XF, Ding J, Zhang D, Guo QX, Ogawa H (2009) Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties. Nanotechnology 20(8):085603. https://doi.org/10.1088/0957-4484/20/8/085603

    Article  PubMed  CAS  Google Scholar 

  5. Hodes G (2007) Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys Chem Chem Phys 9(18):2181–2196. https://doi.org/10.1039/b616684a

    Article  PubMed  CAS  Google Scholar 

  6. Puscher C (1868) Ueber ein neues und billiges Verfahren, ohne Anwendung von Farben verschiedene Metalle (wie Gold, Silber, Kupfer, Argentan, Messing, Tombak, Eisen, Zink) mit prachtvollen Lüsterfarben zu überziehen. Polytech J 190(CVIII):3

    Google Scholar 

  7. Eiben S, Stitz N, Eber F, Wagner J, Atanasova P, Bill J, Wege C, Jeske H (2014) Tailoring the surface properties of tobacco mosaic virions by the integration of bacterially expressed mutant coat protein. Virus Res 180:92–96. https://doi.org/10.1016/j.virusres.2013.11.019. S0168-1702(13)00426-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  8. Royston E, Ghosh A, Kofinas P, Harris MT, Culver JN (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24(3):906–912. https://doi.org/10.1021/la7016424

    Article  CAS  PubMed  Google Scholar 

  9. Alonso JM, Gorzny ML, Bittner AM (2013) The physics of tobacco mosaic virus and virus-based devices in biotechnology. Trends Biotechnol 31(9):530–538. https://doi.org/10.1016/j.tibtech.2013.05.013

    Article  PubMed  CAS  Google Scholar 

  10. Bromley KM, Patil AJ, Perriman AW, Stubbs G, Mann S (2008) Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J Mater Chem 18(40):4796–4801. https://doi.org/10.1039/b809585j

    Article  CAS  Google Scholar 

  11. Lee SY, Choi JW, Royston E, Janes DB, Culver JN, Harris MT (2006) Deposition of platinum clusters on surface-modified tobacco mosaic virus. J Nanosci Nanotechnol 6(4):974–981. https://doi.org/10.1166/jnn.2006.146

    Article  PubMed  CAS  Google Scholar 

  12. Manocchi AK, Horelik NE, Lee B, Yi H (2010) Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates. Langmuir 26(5):3670–3677. https://doi.org/10.1021/la9031514

    Article  PubMed  CAS  Google Scholar 

  13. Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiss E, Kern K (2003) Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett 3(8):1079–1082

    Article  CAS  Google Scholar 

  14. Balci S, Bittner AM, Hahn K, Scheu C, Knez M, Kadri A, Wege C, Jeske H, Kern K (2006) Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim Acta 51(28):6251–6257. https://doi.org/10.1016/j.electacta.2006.04.007

    Article  CAS  Google Scholar 

  15. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253. https://doi.org/10.1002/(Sici)1521-4095(199903)11:3<253::Aid-Adma253>3.0.Co;2-7

    Article  CAS  Google Scholar 

  16. Balci S, Bittner AM, Schirra M, Thonke K, Sauer R, Hahn K, Kadri A, Wege C, Jeske H, Kern K (2009) Catalytic coating of virus particles with zinc oxide. Electrochim Acta 54(22):5149–5154. https://doi.org/10.1016/j.electacta.2009.03.036

    Article  CAS  Google Scholar 

  17. Royston ES, Brown AD, Harris MT, Culver JN (2009) Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles. J Colloid Interface Sci 332(2):402–407. https://doi.org/10.1016/j.jcis.2008.12.064. S0021-9797(08)01733-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  18. Altintoprak K, Seidenstucker A, Welle A, Eiben S, Atanasova P, Stitz N, Plettl A, Bill J, Gliemann H, Jeske H, Rothenstein D, Geiger F, Wege C (2015) Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition. Beilstein J Nanotech 6:1399–1412. https://doi.org/10.3762/bjnano.6.145

    Article  CAS  Google Scholar 

  19. Schenk AS, Eiben S, Goll M, Reith L, Kulak AN, Meldrum FC, Jeske H, Wege C, Ludwigs S (2017) Virus-directed formation of electrocatalytically active nanoparticle-based Co3O4 tubes. Nanoscale 9:6334. https://doi.org/10.1039/c7nr00508c

    Article  PubMed  CAS  Google Scholar 

  20. Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12(5):1303–1311. https://doi.org/10.1021/La9502251

    Article  CAS  Google Scholar 

  21. Niwa D, Fujie T, Lang T, Goda N, Takeoka S (2012) Heterofunctional nanosheet controlling cell adhesion properties by collagen coating. J Biomater Appl 27(2):131–141. https://doi.org/10.1177/0885328210394470

    Article  PubMed  Google Scholar 

  22. Ariga K, Nakanishi T, Michinobu T (2006) Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, langmuir-blodgett films, and layer-by-layer assemblies) and their related functions. J Nanosci Nanotechnol 6(8):2278–2301. https://doi.org/10.1166/jnn.2006.503

    Article  PubMed  CAS  Google Scholar 

  23. Kuncicky DM, Naik RR, Velev OD (2006) Rapid deposition and long-range alignment of nanocoatings and arrays of electrically conductive wires from tobacco mosaic virus. Small 2(12):1462–1466. https://doi.org/10.1002/smll.200600399

    Article  PubMed  CAS  Google Scholar 

  24. Wargacki SP, Pate B, Vaia RA (2008) Fabrication of 2D ordered films of tobacco mosaic virus (TMV): processing morphology correlations for convective assembly. Langmuir 24(10):5439–5444. https://doi.org/10.1021/La7040778

    Article  PubMed  CAS  Google Scholar 

  25. Atanasova P, Stitz N, Sanctis S, Maurer JH, Hoffmann RC, Eiben S, Jeske H, Schneider JJ, Bill J (2015) Genetically improved monolayer-forming tobacco mosaic viruses to generate nanostructured semiconducting bio/inorganic hybrids. Langmuir 31(13):3897–3903. https://doi.org/10.1021/acs.langmuir.5b00700

    Article  PubMed  CAS  Google Scholar 

  26. Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C (2013) TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5(9):3808–3816. https://doi.org/10.1039/c3nr33724c

    Article  CAS  PubMed  Google Scholar 

  27. Mueller A, Kadri A, Jeske H, Wege C (2010) In vitro assembly of Tobacco mosaic virus coat protein variants derived from fission yeast expression clones or plants. J Virol Methods 166(1-2):77–85. https://doi.org/10.1016/j.jviromet.2010.02.026

    Article  PubMed  CAS  Google Scholar 

  28. Kadri A, Maiss E, Amsharov N, Bittner AM, Balci S, Kern K, Jeske H, Wege C (2011) Engineered Tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties. Virus Res 157(1):35–46. https://doi.org/10.1016/j.virusres.2011.01.014

    Article  PubMed  CAS  Google Scholar 

  29. Culver JN, Dawson WO, Plonk K, Stubbs G (1995) Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic-virus. Virology 206(1):724–730. https://doi.org/10.1016/S0042-6822(95)80096-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support through the priority program SPP 1569 of the DFG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petia Atanasova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Atanasova, P. (2018). Semiconducting Hybrid Layer Fabrication Scaffolded by Virus Shells. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics