Synthetic Biology pp 95-123 | Cite as
Transformation of an Exotic Yeast Species into a Platform Organism: A Case Study for Engineering Glycolipid Production in the Yeast Starmerella bombicola
- 9 Citations
- 3 Mentions
- 2.6k Downloads
Abstract
In this chapter, a step-by-step approach on how to transform non-conventional yeasts or fungi into platform organisms is described. The non-conventional glycolipid producing yeast Starmerella bombicola (and in some cases also Pseudohyphozyma bogoriensis) is used as a case study. And more specifically how to engineer it toward production of new-to-nature glycolipids like bola sophorolipids. When starting genetic engineering efforts for non-lab strains, one should start at the very basis: identifying selection markers and possibly developing auxotrophic strains. Once this is done, the quest for the development of an optimal transformation method can be started. After optimization thereof, knock-out and knock-in strains can be generated based upon the specific strategy/aim. Sometimes this can lead to unexpected, but yet very interesting findings. To fully and efficiently expand the potential as a production platform of these yeast strains, a range of additional molecular tools are required. A well-equipped molecular toolbox should contain a set of characterized promotors, terminators, and defined genomic landing paths. The availability of an episomal system greatly facilitates engineering and screening efforts, but also offers the possibility of developing more advanced engineering techniques such as Crispr-Cas. InBio.be is a world leading pioneer to do this for the yeast S. bombicola and combined, these efforts will result in the commercialization of new types of glycolipids in the next few years.
Keywords
Biosurfactants Glycolipids Sophorolipids Starmerella bombicola Pseudohyphozyma bogoriensis Genetic engineering Metabolic engineeringReferences
- 1.Solaiman DKY, Ashby RD, Crocker NV (2015) High-titer production and strong antimicrobial activity of sophorolipids from Rhodotorula bogoriensis. Biotechnol Prog 31(4):867–874CrossRefPubMedGoogle Scholar
- 2.Ashby RD, Solaiman DKY, Foglia TA (2008) Property control of sophorolipids: influence of fatty acid substrate and blending. Biotechnol Lett 30(6):1093–1100CrossRefPubMedGoogle Scholar
- 3.Van Bogaert I, Fleurackers S, Van Kerrebroeck S, Develter D, Soetaert W (2011) Production of new-to-nature sophorolipids by cultivating the yeast Candida bombicola on unconventional hydrophobic substrates. Biotechnol Bioeng 108(4):734–741CrossRefPubMedGoogle Scholar
- 4.Zhang J, Saerens KMJ, Van Bogaert INA, Soetaert W (2011) Vegetable oil enhances sophorolipid production by Rhodotorula bogoriensis. Biotechnol Lett 33(12):2417–2423CrossRefPubMedGoogle Scholar
- 5.Van Bogaert INA, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ (2008) Development of a transformation and selection system for the glycolipid-producing yeast Candida bombicola. Yeast 25(4):273–278CrossRefPubMedGoogle Scholar
- 6.Saerens KMJ, Zhang J, Saey L, Van Bogaert INA, Soetaert W (2011) Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast 28(4):279–292CrossRefPubMedGoogle Scholar
- 7.Van Bogaert INA, Buyst D, Martins JC, Roelants SLKW, Soetaert WK (2016) Synthesis of bolaform biosurfactants by an engineered Starmerella bombicola yeast. Biotechnol Bioeng 113(12):2644–2651CrossRefPubMedGoogle Scholar
- 8.Saerens KMJ, Saey L, Soetaert W (2011) One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola. Biotechnol Bioeng 108(12):2923–2931CrossRefPubMedGoogle Scholar
- 9.Roelants SLKW, Saerens KMJ, Derycke T, Li B, Lin Y-C, Van de Peer Y, De Maeseneire SL, Van Bogaert INA, Soetaert W (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110(9):2494–2503CrossRefPubMedGoogle Scholar
- 10.Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin Y-C, Van de Peer Y, Soetaert W (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88(3):501–509CrossRefPubMedGoogle Scholar
- 11.Saerens KMJ, Roelants SLKW, Van Bogaert INA, Soetaert W (2011) Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. FEMS Yeast Res 11(1):123–132CrossRefPubMedGoogle Scholar
- 12.Roelants SLKW, Ciesielska K, De Maeseneire SL, Moens H, Everaert B, Verweire S, Denon Q, Vanlerberghe B, Van Bogaert INA, Van der Meeren P, Devreese B, Soetaert W (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 113(3):550–559CrossRefPubMedGoogle Scholar
- 13.Ciesielska K, Van Bogaert IN, Chevineau S, Li B, Groeneboer S, Soetaert W, Van de Peer Y, Devreese B (2014) Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. J Proteome 98:159–174CrossRefGoogle Scholar
- 14.Van Bogaert INA, De Maeseneire SL, De Schamphelaire W, Develter D, Soetaert W, Vandamme EJ (2007) Cloning, characterization and functionality of the orotidine-5′-phosphate decarboxylase gene (URA3) of the glycolipid-producing yeast Candida bombicola. Yeast 24(3):201–208CrossRefPubMedGoogle Scholar
- 15.Friel D, Vandenbol M, Haïssam Jijakli M (2003) Cloning and sequence analysis of the TRP1 gene encoding the phosphoribosyl anthranilate isomerase from Pichia anomala (strain K). Yeast 20(16):1331–1337CrossRefPubMedGoogle Scholar
- 16.Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68(5):2095–2100CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Rodríguez L, Chávez FP, González ME, Basabe L, Rivero T (1998) Isolation and sequence analysis of the orotidine-5′-phosphate decarboxylase gene (URA3) ofCandida utilis. Comparison with the OMP decarboxylase gene family. Yeast 14(15):1399–1406CrossRefPubMedPubMedCentralGoogle Scholar
- 18.François F, Chapeland-Leclerc F, Villard J, Noël T (2004) Development of an integrative transformation system for the opportunistic pathogenic yeastCandida lusitaniae usingURA3 as a selection marker. Yeast 21(2):95–106CrossRefGoogle Scholar
- 19.De Maeseneire SL, De Groeve MRM, Dauvrin T, De Mey M, Soetaert W, Vandamme EJMC (2006) Cloning, sequence analysis and heterologous expression of the Myrothecium gramineum orotidine-5′-monophosphate decarboxylase gene. FEMS Microbiol Lett 261(2):262–271CrossRefGoogle Scholar
- 20.Ballance DJ (1986) Sequences important for gene expression in filamentous fungi. Yeast 2(4):229–236CrossRefPubMedGoogle Scholar
- 21.Basehoar AD, Zanton SJ, Pugh BF (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699–709CrossRefPubMedGoogle Scholar
- 22.GUO Z, SHERMAN F (1996) 3′-end-forming signals of yeast mRNA. Trends Biochem Sci 21(12):477–481CrossRefPubMedGoogle Scholar
- 23.Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34CrossRefPubMedGoogle Scholar
- 24.Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92(2):189–195CrossRefPubMedGoogle Scholar
- 25.Van Bogaert INA (2008) Microbial synthesis of sophorolipids by the yeast Candida bombicola, Ghent UniversityGoogle Scholar
- 26.Hentges P, Van Driessche B, Tafforeau L, Vandenhaute J, Carr AM (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching inSchizosaccharomyces pombe. Yeast 22(13):1013–1019CrossRefPubMedGoogle Scholar
- 27.Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21(14):3329–3330CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Manivasakam P, Weber SC, McElver J, Schiestl RH (1995) Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res 23(14):2799–2800CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Verbeke J, Beopoulos A, Nicaud J-M (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35(4):571–576CrossRefPubMedGoogle Scholar
- 30.Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7):e6441CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Ianiri G, Wright SAI, Castoria R, Idnurm A (2011) Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 48(7):685–695CrossRefPubMedGoogle Scholar
- 32.Liu Y, Koh CMJ, Sun L, Hlaing MM, Du M, Peng N, Ji L (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97(2):719–729CrossRefPubMedGoogle Scholar
- 33.Ianiri G, Idnurm A (2015) Agrobacterium tumefaciens- mediated transformation of Pucciniomycotina red yeasts. Springer, Cham, pp 163–168Google Scholar
- 34.Abbott EP, Ianiri G, Castoria R, Idnurm A (2013) Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 97(1):283–295CrossRefPubMedGoogle Scholar
- 35.Kollár R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin. J Biol Chem 272(28):17762–17775CrossRefPubMedGoogle Scholar
- 36.Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346CrossRefPubMedGoogle Scholar
- 37.Featherstone C, Jackson SP (1999) Ku, a DNA repair protein with multiple cellular functions? Mutat Res 434(1):3–15CrossRefPubMedGoogle Scholar
- 38.Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26(7):1551–1559CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One 7(6):e39720CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Foureau E, Courdavault V, Rojas LF, Dutilleul C, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc’h N, Clastre M, Papon N (2013) Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnol Lett 35(7):1035–1043CrossRefPubMedGoogle Scholar
- 41.Saerens KMJ (2012) Synthesis of glycolipids by Candida bombicola, Ghent UniversityGoogle Scholar
- 42.Roelants SLKW, Lodens S, Ciesielska K, Geys R, Coussement P, Pattyn F, Saerens K, Devreese B, De Maeseneire SL, Soetaert W (2018) Transformation of the biosurfactant production yeast Starmerella bombicola into a chassis organism: development, validation and application of a dedicated molecular toolkit.Metabolic Engineering (Submitted).Google Scholar
- 43.Yon J, Fried M (1989) Precise gene fusion by PCR. Nucleic Acids Res 17(12):4895CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Yolov AA, Shabarova ZA (1990) Constructing DNA by polymerase recombination. Nucleic Acids Res 18(13):3983–3986CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Zou R, Zhou K, Stephanopoulos G, Too HP (2013) Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One 8(11):e79557CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Lang S, Brakemeier A, Heckmann R, Spöckner S, Rau U (2000) Production of native and modified sophorose lipids. Chim Oggi 18(10):76–79Google Scholar
- 47.Branduardi P, Valli M, Brambilla L, Sauer M, Alberghina L, Porro D (2004) The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res 4(4–5):493–504CrossRefPubMedGoogle Scholar
- 48.Roelants S (2013) Starmerella bombicola as a platform organism for the production of biobased compounds, Ghent University. Faculty of Bioscience EngineeringGoogle Scholar
- 49.Geys R (2017) Engineering the metabolism of Starmerella bombicola for the production of tailor-made glycolipids, Ghent UniversityGoogle Scholar
- 50.Hara A, Ueda M, Matsui T, Furuhashi K, Kanayama N, Tanaka A (1999) Construction of an autonomously replicating plasmid in n-alkane-assimilating yeast, Candida Tropicalis. J Biosci Bioeng 87(6):717–720CrossRefPubMedGoogle Scholar
- 51.Kanayama N, Ueda M, Atomi H, Tanaka A (1998) Genetic evaluation of physiological functions of thiolase isozymes in the n-alkane-assimilating yeast Candida tropicalis. J Bacteriol 180(3):690–698PubMedPubMedCentralGoogle Scholar
- 52.DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Kuijpers NG, Solis-Escalante D, Bosman L, van den Broek M, Pronk JT, Daran J-M, Daran-Lapujade P (2013) A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Factories 12(1):47CrossRefGoogle Scholar