Skip to main content

Production of a Human Cell Line with a Plant Chromosome

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

It is a major challenge in biology to know whether chromosome functions of replication, segregation, gene expression, inheritance, etc. are conserved among evolutionary distant organisms where common structural features are maintained. Establishment of hybrid cell lines between evolutionary distant organisms, such as humans and plants, would be one of the promising synthetic approaches to study the evolutionary conservation of chromosome functions. In this chapter, we describe the protocol for successful establishment of human cell lines with a functional plant chromosome. Systematic analyses of hybrid cells will facilitate the evolutionary study of organisms with respect to chromosome functions. It will also provide a basic platform for genome writing and construction of chromosomal shuttle vectors .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oshimura M, Uno N, Kazuki Y et al (2015) A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosom Res 23:111–133

    Article  CAS  Google Scholar 

  2. Tomizuka K, Yoshida H, Uejima H et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143

    Article  CAS  PubMed  Google Scholar 

  3. Ramulu KS, Dijkhuis P, Rutgers E et al (1996) Microprotoplast mediated transfer of single specific chromosomes between sexually incompatible plants. Genome 39:921–933

    Article  CAS  PubMed  Google Scholar 

  4. Ananiev EV, RieraLizarazu O, Rines HW, Phillips RL (1997) Oat-maize chromosome addition lines: a new system for mapping the maize genome. Proc Natl Acad Sci U S A 94:3524–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson MD, Barbosa-Morais NL, Schmidt D et al (2008) Species-specific transcription in mice carrying human chromosome 21. Science 322:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diner RE, Noddings CM, Lian NC et al (2017) Diatom centromeres suggest a mechanism for nuclear DNA acquisition. Proc Natl Acad Sci U S A 114:E6015–E6024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones CW, Mastrangelo IA, Smith HH et al (1976) Interkingdom fusion between human (HeLa) cells and tobacco hybrid (GGLL) protoplasts. Science 193:401–403

    Article  CAS  PubMed  Google Scholar 

  8. Lermontova I, Fuchs J, Schubert V, Schubert I (2007) Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116:507–510

    Article  PubMed  Google Scholar 

  9. Cocking EC (1984) Plant animal-cell fusions. Ciba Found Symp 103:119–123

    CAS  PubMed  Google Scholar 

  10. Wada N, Kazuki Y, Kazuki K et al (2017) Maintenance and function of a plant chromosome in human cells. ACS Synth Biol 6:301–310

    Article  CAS  PubMed  Google Scholar 

  11. Hansen D, Stadler J (1977) Imcreased polyethylene glycol-mediated fusion competence in mitotic cells of a mouse lymphoid-cell line. Somatic Cell Genet 3:471–482

    Article  CAS  PubMed  Google Scholar 

  12. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  13. Stoecklin G, Ming X-F, Looser R, Moroni C (2000) Somatic mRNA Turnover mutants implicate tristetraprolin in the interleukin-3 mRNA degradation pathway. Mol Cell Biol 20:3753–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by a Grant-in-Aid for JSPS fellows 23-7429 from JSPS KAKENHI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Oshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wada, N., Kazuki, Y., Kazuki, K., Inoue, T., Fukui, K., Oshimura, M. (2018). Production of a Human Cell Line with a Plant Chromosome. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics