Three-Dimensional Cell-Based Microarrays: Printing Pluripotent Stem Cells into 3D Microenvironments

  • Jorge F. Pascoal
  • Tiago G. FernandesEmail author
  • Gregory J. Nierode
  • Maria Margarida Diogo
  • Jonathan S. DordickEmail author
  • Joaquim M. S. Cabral
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)


Cell-based microarrays are valuable platforms for the study of cytotoxicity and cellular microenvironment because they enable high-throughput screening of large sets of conditions at reduced reagent consumption. However, most of the described microarray technologies have been applied to two-dimensional cultures, which do not accurately emulate the in vivo three-dimensional (3D) cell–cell and cell–extracellular matrix interactions.

Herein, we describe the methodology for production of alginate- and Matrigel-based 3-D cell microarrays for the study of mouse and human pluripotent stem cells on two different chip-based platforms. We further provide protocols for on-chip proliferation/viability analysis and the assessment of protein expression by immunofluorescence.

Key words

3D cell microarray Pluripotent stem cells Cellular microenvironment High-content screening Cytotoxicity 



The work involved in the development of this protocol was funded by NIH (ES020903) and NYSTEM (C026717). JFP acknowledges support from Fundação para a Ciência e Tecnologia (SFRH/BD/79590/2011), which also funded iBB (UID/BIO/04565/2013).


  1. 1.
    Azarin SM, Larson EA, Almodóvar-Cruz JM et al (2012) Effects of 3D microwell culture on growth kinetics and metabolism of human embryonic stem cells. Biotechnol Appl Biochem 59:88–96CrossRefGoogle Scholar
  2. 2.
    Loessner D, Stok KS, Lutolf MP et al (2010) Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31:8494–8506CrossRefGoogle Scholar
  3. 3.
    Bruce A, Evans R, Mezan R et al (2015) Three-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS One 10:e0140506CrossRefGoogle Scholar
  4. 4.
    Eglen RM, Randle DH (2015) Drug discovery goes three-dimensional: goodbye to flat high-throughput screening? Assay Drug Dev Technol 13:262–265CrossRefGoogle Scholar
  5. 5.
    Rothbauer M, Charwat V, Ertl P (2016) Cell microarrays for biomedical applications. In: Li PC, Sedighi A, Wang L (eds) Microarray technology. Springer, New York, pp 273–291CrossRefGoogle Scholar
  6. 6.
    Fernandes TG, Diogo MM, Clark DS et al (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349CrossRefGoogle Scholar
  7. 7.
    Meli L, Barbosa HSC, Hickey AM et al (2014) Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res 13:36–47CrossRefGoogle Scholar
  8. 8.
    Kwon SJ, Lee DW, Shah DA et al (2014) High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening. Nat Commun 5:3739PubMedPubMedCentralGoogle Scholar
  9. 9.
    Fernandes TG, Kwon S-J, Lee M-Y et al (2008) On-chip, cell-based microarray immunofluorescence assay for high-throughput analysis of target proteins. Anal Chem 80:6633–6639CrossRefGoogle Scholar
  10. 10.
    Nierode G, Kwon PS, Dordick JS et al (2015) Cell-based assay design for high-content screening of drug candidates. J Microbiol Biotechnol 26:213–225CrossRefGoogle Scholar
  11. 11.
    Joshi P, Lee MY (2015) High content imaging (HCI) on miniaturized three-dimensional (3D) cell cultures. Biosensors 5:768–790CrossRefGoogle Scholar
  12. 12.
    Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  13. 13.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  14. 14.
    Mitalipov S, Wolf D (2009) Totipotency, pluripotency and nuclear reprogramming. In: Engineering of stem cells. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 185–199CrossRefGoogle Scholar
  15. 15.
    Klimanskaya I, Rosenthal N, Lanza R (2008) Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 7:131–142CrossRefGoogle Scholar
  16. 16.
    Lee M-Y, Kumar RA, Sukumaran SM et al (2008) Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci U S A 105:59–63CrossRefGoogle Scholar
  17. 17.
    Fernandes TG, Kwon S-J, Bale SS et al (2010) Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol Bioeng 106:106–118PubMedPubMedCentralGoogle Scholar
  18. 18.
    Diogo MM, Henrique D, Cabral JMS (2008) Optimization and integration of expansion and neural commitment of mouse embryonic stem cells. Biotechnol Appl Biochem 49:105CrossRefGoogle Scholar
  19. 19.
    Lee M-Y, Park CB, Dordick JS et al (2005) Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proc Natl Acad Sci U S A 102:983–987CrossRefGoogle Scholar
  20. 20.
    Nierode GJ, Perea BC, McFarland SK, Pascoal JF, Clark DS, Schaffer DV, Dordick JS (2016) High-throughput toxicity and phenotypic screening of 3D human neural progenitor cell cultures on a microarray chip platform. Stem Cell Rep 7(5):970–982CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jorge F. Pascoal
    • 1
    • 2
  • Tiago G. Fernandes
    • 1
    • 2
    Email author
  • Gregory J. Nierode
    • 2
  • Maria Margarida Diogo
    • 1
  • Jonathan S. Dordick
    • 2
    Email author
  • Joaquim M. S. Cabral
    • 1
  1. 1.Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations