Advertisement

3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning

  • Katerina Tsougeni
  • Kosmas Ellinas
  • George Koukouvinos
  • Panagiota S. Petrou
  • Angeliki Tserepi
  • Sotirios E. Kakabakos
  • Evangelos Gogolides
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)

Abstract

Plasma micro-nanotexturing is a generic technology for topographical and chemical modification of surfaces and their implementation in microfluidics and microarrays. Nanotextured surfaces with desirable chemical functionality (and wetting behavior) have shown excellent biomolecule immobilization and cell adhesion. Specifically, nanotextured hydrophilic areas show (a) strong binding of biomolecules and (b) strong adhesion of cells, while nanotextured superhydrophobic areas show null adsorption of (a) proteins and (b) cells. Here we describe the protocols for (a) biomolecule adsorption control on nanotextured surfaces for microarray fabrication and (b) cell adhesion on such surfaces. 3D plasma nanotextured® substrates are commercialized through Nanoplasmas private company, a spin-off of the National Centre for Scientific Research Demokritos.

Key words

3D plasma micro-nanotexturing Plasma deposition Stable in time desirable chemical functionality Biomolecule arrays Cell patterning 

Notes

Acknowledgment

The following projects are acknowledged for funding of this work: (1) “Love Wave Fully Integrated Lab-on-chip Platform for Food Pathogen Detection”—LOVE FOOD project (Contract No 317742), (2) Horizon 2020-EU 2.1.1, Project ID: 68768, “LOVEFOOD2Market—A portable MicroNanoBioSystem and Instrument for ultra-fast analysis of pathogens in food: Innovation from LOVE-FOOD lab prototype to a pre-commercial instrument” (http://lovefood2market.eu/).

References

  1. 1.
    Ino K, Ito A, Wu Y, Saito N, Hibino E, Takai O, Honda H (2007) Application of ultra-water-repellent surface to cell culture. J Biosci Bioeng 104(5):420–423.  https://doi.org/10.1263/jbb.104.420CrossRefGoogle Scholar
  2. 2.
    Wei S, Vaidya B, Patel AB, Soper SA, McCarley RL (2005) Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. J Phys Chem B 109(35):16988–16996.  https://doi.org/10.1021/jp051550sCrossRefPubMedGoogle Scholar
  3. 3.
    Desmet T, Morent R, Geyter ND, Leys C, Schacht E, Dubruel P (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modifi cation: a review. Biomacromolecules 10:2351CrossRefGoogle Scholar
  4. 4.
    Baquey C, Palumbo F, Porte-Durrieu MC, Legeay G, Tressaud A, d’Agostino R (1999) Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface. Nucl Instrum Methods Phys Res, Sect B 151(1–4):255–262.  https://doi.org/10.1016/S0168-583X(99)00106-8CrossRefGoogle Scholar
  5. 5.
    Bergemann C, Quade A, Kunz F, Ofe S, Klinkenberg E-D, Laue M, Schröder K, Weissmann V, Hansmann H, Weltmann K-D, Nebe B (2012) Ammonia plasma functionalized polycarbonate surfaces improve cell migration inside an artificial 3D cell culture module. Plasma Processes Polym 9(3):261–272.  https://doi.org/10.1002/ppap.201100059CrossRefGoogle Scholar
  6. 6.
    Brétagnol F, Valsesia A, Ceccone G, Colpo P, Gilliland D, Ceriotti L, Hasiwa M, Rossi F (2006) Surface functionalization and patterning techniques to design interfaces for biomedical and biosensor applications. Plasma Processes Polym 3(6–7):443–455.  https://doi.org/10.1002/ppap.200600015CrossRefGoogle Scholar
  7. 7.
    Goddard JM, Hotchkiss JH (2007) Polymer surface modifi cation for the attachment of bioactive compounds. Prog Polym Sci 32:698CrossRefGoogle Scholar
  8. 8.
    Siow KS, Britcher L, Kumar S, HJ G (2006) Plasma methods for the generation of chemically reactive surfaces for biomedical immobilization and cell colonization—a review. Plasma Processes Polym 3:392CrossRefGoogle Scholar
  9. 9.
    Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mat Sci Eng: R: Reports 36(5–6):143–206.  https://doi.org/10.1016/S0927-796X(02)00004-9CrossRefGoogle Scholar
  10. 10.
    Tsougeni K, Tserepi A, Boulousis G, Constantoudis V, Gogolides E (2007) Tunable poly(dimethylsiloxane) topography in O 2 or Ar plasmas for controlling surface wetting properties and their ageing. Jpn J Appl Phys 46(2R):744CrossRefGoogle Scholar
  11. 11.
    Vourdas N, Tserepi A, Gogolides E (2007) Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing. Nanotechnology 18(12):125304CrossRefGoogle Scholar
  12. 12.
    Tsougeni K, Petrou PS, Tserepi A, Kakabakos SE, Gogolides E (2009) Nano-texturing of poly(methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption. Microelectron Eng 86(4–6):1424–1427.  https://doi.org/10.1016/j.mee.2008.11.082CrossRefGoogle Scholar
  13. 13.
    Tsougeni K, Tserepi A, Boulousis G, Constantoudis V, Gogolides E (2007) Control of Nanotexture and wetting properties of Polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Processes Polym 4(4):398–405.  https://doi.org/10.1002/ppap.200600185CrossRefGoogle Scholar
  14. 14.
    Tsougeni K, Tserepi A, Constantoudis V, Gogolides E, Petrou PS, Kakabakos SE (2010) Plasma nanotextured PMMA surfaces for protein arrays: increased protein binding and enhanced detection sensitivity. Langmuir 26(17):13883–13891.  https://doi.org/10.1021/la101957wCrossRefPubMedGoogle Scholar
  15. 15.
    Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C (2009) Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir 25(19):11748–11759.  https://doi.org/10.1021/la901072zCrossRefPubMedGoogle Scholar
  16. 16.
    Vourdas NE, Vlachopoulou M-E, Tserepi A, Gogolides E (2009) Nano-textured polymer surfaces with controlled wetting and optical properties using plasma processing. Int J Nanotechnol 6(1–2):196–207.  https://doi.org/10.1504/ijnt.2009.021716CrossRefGoogle Scholar
  17. 17.
    Tserepi A, Vlachopoulou ME, Gogolides E (2006) Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology 17:3977CrossRefGoogle Scholar
  18. 18.
    Vlachopoulou ME, Petrou PS, Kakabakos SE, Tserepi A, Gogolides E (2008) High-aspect-ratio plasma-induced nanotextured poly(dimethylsiloxane) surfaces with enhanced protein adsorption capacity. J Vac Sci Technol B 26(6):2543–2548.  https://doi.org/10.1116/1.3010723CrossRefGoogle Scholar
  19. 19.
    Vlachopoulou ME, Petrou PS, Kakabakos SE, Tserepi A, Beltsios K, Gogolides E (2009) Effect of surface nanostructuring of PDMS on wetting properties, hydrophobic recovery and protein adsorption. Microelectron Eng 86(4-6):1321–1324.  https://doi.org/10.1016/j.mee.2008.11.050CrossRefGoogle Scholar
  20. 20.
    Song W, Mano JF (2013) Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter 9:2985–2999.  https://doi.org/10.1039/c3sm27739aCrossRefGoogle Scholar
  21. 21.
    Tsougeni K, Petrou PS, Awsiuk K, Marzec MM, Ioannidis N, Petrouleas V, Tserepi A, Kakabakos SE, Gogolides E (2015) Direct covalent biomolecule immobilization on plasma-Nanotextured chemically stable substrates. ACS Appl Mater Interfaces 7(27):14670–14681.  https://doi.org/10.1021/acsami.5b01754CrossRefPubMedGoogle Scholar
  22. 22.
    Ishizaki T, Saito N, Takai O (2010) Correlation of cell adhesive behaviors on Superhydrophobic, Superhydrophilic, and micropatterned Superhydrophobic/Superhydrophilic surfaces to their surface chemistry. Langmuir 26(11):8147–8154.  https://doi.org/10.1021/La904447cCrossRefPubMedGoogle Scholar
  23. 23.
    Oliveira SM, Song W, Alves NM, Mano JF (2011) Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter 7(19):8932–8941CrossRefGoogle Scholar
  24. 24.
    Lai Y, Lin L, Pan F, Huang J, Song R, Huang Y, Lin C, Fuchs H, Chi L (2013) Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small 9(17):2945–2953CrossRefGoogle Scholar
  25. 25.
    Tsougeni K, Bourkoula A, Petrou P, Tserepi A, Kakabakos SE, Gogolides E (2014) Photolithography and plasma processing of polymeric lab on chip for wetting and fouling control and cell patterning. Microelectron Eng 124:47–52.  https://doi.org/10.1016/j.mee.2014.04.020CrossRefGoogle Scholar
  26. 26.
    Poncin-Epaillard F, Herry JM, Marmey P, Legeay G, Debarnot D, Bellon-Fontaine MN (2013) Elaboration of highly hydrophobic polymeric surface—a potential strategy to reduce the adhesion of pathogenic bacteria? Mater Sci Eng C 33:1152–1161.  https://doi.org/10.1016/j.msec.2012.12.020CrossRefGoogle Scholar
  27. 27.
    Zavali M, Petrou PS, Kakabakos SE, Kitsara M, Raptis I, Beltsios K, Misiakos K (2006) Label-free kinetic study of biomolecular interactions by white light reflectance spectroscopy. IET Micro & Nano Letters 1(2):94–98.  https://doi.org/10.1049/mnl:20065019CrossRefGoogle Scholar
  28. 28.
    Bayiati P, Tserepi A, Gogolides E, Misiakos K (2004) Selective plasma-induced deposition of fluorocarbon films on metal surfaces for actuation in microfluidics. J Vac Sci Technnol A 22(4):1546–1551CrossRefGoogle Scholar
  29. 29.
    Tsougeni K, Papageorgiou D, Tserepi A, Gogolides E (2010) "Smart'" polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving. Lab Chip 10(4):462–469.  https://doi.org/10.1039/B916566eCrossRefPubMedGoogle Scholar
  30. 30.
    Tsougeni K, Petrou PS, Papageorgiou DP, Kakabakos SE, Tserepi A, Gogolides E (2012) Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sensor Actuat B-Chem 161(1):216–222.  https://doi.org/10.1016/j.snb.2011.10.022CrossRefGoogle Scholar
  31. 31.
    Greener J, Li W, Ren J, Voicu D, Pakharenko V, Tang T, Kumacheva E (2010) Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab Chip 10(4):522–524.  https://doi.org/10.1039/b918834gCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Katerina Tsougeni
    • 1
    • 2
  • Kosmas Ellinas
    • 1
    • 2
  • George Koukouvinos
    • 3
  • Panagiota S. Petrou
    • 2
    • 3
  • Angeliki Tserepi
    • 1
    • 2
  • Sotirios E. Kakabakos
    • 2
    • 3
  • Evangelos Gogolides
    • 1
    • 2
  1. 1.Institute of Nanoscience and NanotechnologyNCSR DemokritosAttikiGreece
  2. 2.Nanoplasmas PC, A Spin-Out Company of NCSR Demokritos, Lefkippos Technology ParkAttikiGreece
  3. 3.Institute of Nuclear and Radiological Sciences and Technology, Energy and SafetyNCSR DemokritosAttikiGreece

Personalised recommendations