Advertisement

Establishment of Microfluidic Spheroid Cultures for Biomedical Applications

  • Karina Kwapiszewska
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)

Abstract

Multicellular spheroid is a three-dimensional (3D) cell culture model that mimics cancer tumor environment. Its widespread use for anticancer therapy evaluation is nowadays limited by accessibility of 3D compatible assays. Here, a microfluidic system for spheroid formation, culture and analysis is presented. The system is compatible with standard microplate readers. The microfluidic chip enables long-term 3D cell culture and in situ monitoring of cellular viability. Moreover, design of the assay enables observation of delayed type of toxicity or application of repeated doses of a drug.

Key words

3D cell culture Spheroid Cancer Anticancer drug screening In vivo mimicking Long-term cell culture Microplate reader Fluorometry alamarBlue 

References

  1. 1.
    Anton D, Burckel H, Josset E et al (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527CrossRefGoogle Scholar
  2. 2.
    MacArron R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195CrossRefGoogle Scholar
  3. 3.
    Ziółkowska K, Kwapiszewski R, Brzózka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35:979–990CrossRefGoogle Scholar
  4. 4.
    Yamada K, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610CrossRefGoogle Scholar
  5. 5.
    LaBarbera DV, Reid BG, Yoo BH (2012) The multicellular tumor spheroid model for high-throughput cancer drug discovery. Exp Opin Drug Discov 7:819–830CrossRefGoogle Scholar
  6. 6.
    Wu L, Di Carlo D, Lee L (2008) Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 10:197–202CrossRefGoogle Scholar
  7. 7.
    Kloß D, Fischer M, Rothermel A et al (2008) Drug testing on 3D in vitro tissues trapped on a microcavity chip. Lab Chip 8:879–884CrossRefGoogle Scholar
  8. 8.
    Kang E, Choi Y, Jun Y et al (2010) Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 10:2651–2654CrossRefGoogle Scholar
  9. 9.
    Kim C, Bang J, Kim Y et al (2012) On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip 12:4135–4142CrossRefGoogle Scholar
  10. 10.
    Tung YC, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478CrossRefGoogle Scholar
  11. 11.
    Kwapiszewska K, Michalczuk A, Rybka M et al (2014) A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip 14:2096–2104CrossRefGoogle Scholar
  12. 12.
    Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 239:177–184CrossRefGoogle Scholar
  13. 13.
    Ziółkowska K, Stelmachowska A, Kwapiszewski R et al (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 40:68–74CrossRefGoogle Scholar
  14. 14.
    Ziółkowska K, Zukowski K, Chudy M et al (2011) Enhancing efficiency of double casting prototyping by thermal aging of poly(dimethylsiloxane). Proc MicroTAS 2011:1164–1166Google Scholar
  15. 15.
    Kwapiszewska K, Żukowski K, Kwapiszewski R et al (2016) Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane). AIMS Biophys 3:553–562CrossRefGoogle Scholar
  16. 16.
    Zuchowska A, Kwapiszewska K, Chudy M et al (2017) Studies of anticancer drug cytotoxicity based on long–term HepG2 spheroid culture in a microfluidic system. Electrophoresis 38:1206–1216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karina Kwapiszewska
    • 1
  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations