Fabrication of Biomolecule Microarrays Using Rapid Photochemical Surface Patterning in Thiol–Ene-Based Microfluidic Devices

  • Alexander Jönsson
  • Josiane P. Lafleur
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)


In many biochip applications, it is advantageous to be able to immobilize biomolecules at specific locations on the surface of solid supports. In this protocol, we describe a photochemical surface patterning procedure based on thiol–ene/yne photochemistry which allows for the simple and rapid selective patterning of biomolecules on thiol–ene solid supports. We describe the preparation of solid supports which are required for the immobilization, including porous monoliths, as well as two different immobilization schemes based on biotin–streptavidin interactions and covalent linkage via free amino groups respectively.

Key words

Thiol–ene Thiol–yne Photochemistry Photoimmobilization Microfluidics Monoliths Biotin–streptavidin Amino groups Enzyme immobilization OSTE 


  1. 1.
    Khire VS, Yi Y, Clark NA, Bowman CN (2008) Formation and surface modification of nanopatterned thiol-ene substrates using step and flash imprint lithography. Adv Mater 20:3308–3313CrossRefGoogle Scholar
  2. 2.
    Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der W W (2011) Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11:3136–3147CrossRefGoogle Scholar
  3. 3.
    Jonkheijm P, Weinrich D, Köhn M, Engelkamp H, Christianen PCM, Kuhlmann J, Maan JC, Nüsse D, Schroeder H, Wacker R et al (2008) Photochemical surface patterning by the thiol-ene reaction. Angew Chem Int Ed 120:4421–4424CrossRefGoogle Scholar
  4. 4.
    Lafleur JP, Kwapiszewski R, Jensen TG, Kutter JP (2013) Rapid photochemical surface patterning of proteins in thiol–ene based microfluidic devices. Analyst 138:845–849CrossRefGoogle Scholar
  5. 5.
    Feidenhans’l NA, Lafleur JP, Jensen TG, Kutter JP (2014) Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices. Electrophoresis 35:282–288CrossRefGoogle Scholar
  6. 6.
    Lafleur JP, Senkbeil S, Novotny J, Nys G, Bøgelund N, Rand KD, Foret F, Kutter JP (2015) Rapid and simple preparation of thiol–ene emulsion-templated monoliths and their application as enzymatic microreactors. Lab Chip 15:2162–2172CrossRefGoogle Scholar
  7. 7.
    Magenau AJD, Chan JW, Hoyle CE, Storey RF (2010) Facile polyisobutylene functionalization via thiol–ene click chemistry. Polym Chem 1:831–833CrossRefGoogle Scholar
  8. 8.
    Tiller J, Berlin P, Klemm D (1999) A novel efficient enzyme-immobilization reaction on NH2 polymers by means of L-ascorbic acid. Biotechnol Appl Biochem 30:155–162PubMedGoogle Scholar
  9. 9.
    Jönsson A, Svejdal RR, Bøgelund N, Nguyen TTTN, Flindt H, Kutter JP, Rand KD, Lafleur JP (2017) Thiol-ene monolithic pepsin microreactor with a 3D-printed interface for efficient UPLC-MS peptide mapping analyses. Anal Chem 89:4573–4580CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Faculty of Technical Chemistry, Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria

Personalised recommendations