Advertisement

Fabrication of Multielectrode Arrays for Neurobiology Applications

  • Mario Malerba
  • Hayder Amin
  • Gian N. Angotzi
  • Alessandro Maccione
  • Luca Berdondini
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)

Abstract

Substrate-integrated multielectrode arrays (MEAs) enable multisite, long-term, and label-free sensing and actuation of neuronal electrical signals in reduced cell culture models for network electrophysiology. Conventional, thin-film fabricated passive MEAs typically provide a few tens of electrode sites. New generations of active CMOS-based high-resolution arrays provide the capabilities of simultaneous recordings from thousands of neurons over fields of view of several square millimeters, yet allowing extracellular electrical imaging to be achieved down to the subcellular scale. In turn, such advancement in chip-based electrical readouts can significantly complement recently developed biotechnological and bimolecular techniques for neurobiology applications. Here, we describe (1) a simple method to fabricate passive MEAs and (2) protocols for preparing and growing primary rat hippocampal neuronal cultures and human iPS-derived neurons on MEAs. The aim is to provide reliable protocols for initiating the reader to this technology and for stimulating their further development and experimental use in neurobiology.

Key words

Multielectrode arrays (MEAs) CMOS-MEAs Network electrophysiology Primary rat hippocampal neuronal cultures Human iPS-derived neuronal cultures 

References

  1. 1.
    Pine J (2006) A history of MEA development. In: Taketani M, Baudry M (eds) Advances in network electrophysiology. Springer, New York, pp 3–23CrossRefGoogle Scholar
  2. 2.
    Soe AK, Nahavandi S, Khoshmanesh K (2012) Neuroscience goes on a chip. Biosens Bioelectron 35(1):1–13CrossRefPubMedGoogle Scholar
  3. 3.
    Pearce TM, Williams JC (2007) Microtechnology: meet neurobiology. Lab Chip 7(1):30–40CrossRefPubMedGoogle Scholar
  4. 4.
    Johnstone AFM, Gross GW, Weiss DG, Schroeder OHU, Gramowski A, Shafer TJ (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4):331–350CrossRefPubMedGoogle Scholar
  5. 5.
    Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK (2011) Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology 32(1):158–168CrossRefPubMedGoogle Scholar
  6. 6.
    Normann RA (2007) Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neurol 3(8):444–452CrossRefPubMedGoogle Scholar
  7. 7.
    Jones IL, Livi P, Lewandowska MK, Fiscella M, Roscic B, Hierlemann A (2011) The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Anal Bioanal Chem 399(7):2313–2329CrossRefPubMedGoogle Scholar
  8. 8.
    Amin H, Maccione A, Marinaro F, Zordan S, Nieus T, Berdondini L (2016) Electrical responses and spontaneous activity of human iPS-derived neuronal networks characterized for 3-month culture with 4096-electrode arrays. Front Neurosci 10:121CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Berdondini L, Overstolz T, De Rooij NF, KoudelkaHep M, Wäny M, Seitz P (2001) High-density microelectrode arrays for electrophysiological activity imaging of neuronal networks. 8th IEEE-ICECS MaltaGoogle Scholar
  10. 10.
    Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M, Martinoia S (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9(18):2644–2651CrossRefPubMedGoogle Scholar
  11. 11.
    Hierlemann BA, Frey U, Hafizovic S, Heer F (2011) Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc IEEE 99(2):252–284CrossRefGoogle Scholar
  12. 12.
    Muller J, Ballini M, Livi P, Chen Y, Radivojevic M, Shadmani A, Viswam V, Jones IL, Fiscella M, Diggelmann R, Stettler A, Frey U, Bakkum DJ, Hierlemann A (2015) High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15(13):2767–2780CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A (2009) Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens Bioelectron 24(7):2191–2198CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrea E, Maccione A, Medrihan L, Nieus T, Ghezzi D, Baldelli P, Benfenati F, Berdondini L (2012) Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 6:80CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maccione A, Garofalo M, Nieus T, Tedesco M, Berdondini L, Martinoia S (2012) Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays. J Neurosci Methods 207(2):161–171CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3(7):434–439CrossRefGoogle Scholar
  17. 17.
    Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4(2):126–133CrossRefGoogle Scholar
  18. 18.
    Bareket-Keren L, Hanein Y (2013) Carbon nanotube-based multielectrode arrays for neuronal interfacing: progress and prospects. Front Neural Circuits 6:122CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR (2011) PEDOT polymer coatings facilitate smaller neural recording electrodes. J Neural Eng 8(1):014001CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sessolo M, Khodagholy D, Rivnay J, Maddalena F, Gleyzes M, Steidl E, Buisson B, Malliaras GG (2013) Easy-to-fabricate conducting polymer microelectrode arrays. Adv Mater 25(15):2135–2139CrossRefPubMedGoogle Scholar
  21. 21.
    Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29(24–25):3393–3399CrossRefPubMedGoogle Scholar
  22. 22.
    Abidian MR, Corey JM, Kipke DR, Martin DC (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment and neurite outgrowth of neural electrodes. Small 6(3):421–429CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2013) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J Biomed Mater Res 56(2):261–272CrossRefGoogle Scholar
  24. 24.
    Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol 8(2):83–94CrossRefPubMedGoogle Scholar
  25. 25.
    Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM (2010) Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993):830CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q, Choe HS, Tian B, Jiang X, Lieber CM (2012) Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol 7(3):174–179CrossRefGoogle Scholar
  27. 27.
    Dipalo M, Messina GC, Amin H, La Rocca R, Shalabaeva V, Simi A, Maccione A, Zilio P, Berdondini L, De Angelis F (2015) 3D plasmonic nanoantennas integrated with MEA biosensors. Nanoscale 7(8):3703–3711CrossRefPubMedGoogle Scholar
  28. 28.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576CrossRefPubMedGoogle Scholar
  29. 29.
    Berdondini L, Chiappalone M, van der Wal PD, Imfeld K, de Rooij NF, Koudelka-Hep M, Tedesco M, Martinoia S, van Pelt J, Le Masson G, Garenne A (2006) A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors Actuators B Chem 114(1):530–541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mario Malerba
    • 1
  • Hayder Amin
    • 1
  • Gian N. Angotzi
    • 1
  • Alessandro Maccione
    • 1
  • Luca Berdondini
    • 1
  1. 1.Fondazione Istituto Italiano di Tecnologia (IIT)Neuroscience and Brain TechnologiesGenoaItaly

Personalised recommendations