Advertisement

Chromothripsis and the Macroevolution Theory

  • Franck Pellestor
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)

Abstract

The recent discovery of a new class of massive chromosomal rearrangements, occurring during one unique cellular event and baptized “chromothripsis,” deeply modifies our perception on the genesis of complex genomic rearrangements, but also it raises the question of the potential driving role of chromothripsis in species evolution. The occurrence of chromothripsis appears to be in good agreement with macroevolution models proposed as a complement to phyletic gradualism. The emergence of this unexpected phenomenon may help to demonstrate the contribution of chromosome rearrangements to speciation process.

Key words

Chromothripsis Chromosome Macroevolution Speciation 

Notes

Acknowledgments

Work in the unit of Chromosomal Genetics is supported by the CHU research platform ChromoStem (http://www.chu-montpellier.fr/fr/chercheurs/plateformes/les-plateformes-recherche/chromostem/).

References

  1. 1.
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kloosterman WP, Gurvey V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20:1916–1924CrossRefPubMedGoogle Scholar
  3. 3.
    Molenaar JJ, Koster J, Zwijnenburg DA et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593CrossRefPubMedGoogle Scholar
  4. 4.
    Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–998CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tubio JMC, Estivill X (2011) When catastrophe strikes a cell. Nature 470:476–477CrossRefPubMedGoogle Scholar
  6. 6.
    Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jones MJK, Jallepalli PV (2010) Chromothripsis: chromosomes in crisis. Dev Cell 23:908–917CrossRefGoogle Scholar
  8. 8.
    Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ledbetter DH (2008) Chaos in the embryo. Nat Med 5:490–491Google Scholar
  10. 10.
    Pellestor (2014) Chromothripsis: how does such a catastrophic event impact human reproduction ? Hum Reprod 29(3):388–393CrossRefPubMedGoogle Scholar
  11. 11.
    Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236CrossRefPubMedGoogle Scholar
  12. 12.
    Govind SK, Zia A, Hennings-Yeomans PH et al (2014) ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinformatics 15:78.  https://doi.org/10.1186/1471-2105-15-78 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang J, Liu J, Ouyang L et al (2016) CTLPScanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 8 44(W1):W252–W258.  https://doi.org/10.1093/nar/gkw434 CrossRefGoogle Scholar
  14. 14.
    Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven, LondonGoogle Scholar
  15. 15.
    Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology. Freeman Cooper, San Francisco, pp 82–115Google Scholar
  16. 16.
    Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:223–227CrossRefPubMedGoogle Scholar
  17. 17.
    Mallet J (2007) Hybrid speciation. Nature 446:279–283CrossRefPubMedGoogle Scholar
  18. 18.
    Chouard T (2010) Revenge of the hopeful monster. Nature 463:864–867CrossRefPubMedGoogle Scholar
  19. 19.
    Reiseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372CrossRefGoogle Scholar
  20. 20.
    Dittrich-Reed DR, Fitzpatrick B (2013) Transgressive hybrids as hopeful monsters. Evol Biol 40:310–315CrossRefPubMedGoogle Scholar
  21. 21.
    Neme R, Amador C, Yildirim B et al (2017) Random sequences are an abundant source of bioactive RNAs or peptides. Nat Ecol Evol 1(6):0217.  https://doi.org/10.1038/s41559-017-0127 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wilson BA, Foy SG, Neme R et al (2017) Young genes are highly disordered as predicted by the preadaptation hypothesis of de novo gene birth. Nat Ecol Evol 1(6):0146–0146.  https://doi.org/10.1038/s41559-017-0146 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gu S, Szafranski P, Akdemir ZC (2016) Mechanisms for complex chromosomal insertions. PLoS Genet 12(11):e1006446.  https://doi.org/10.1371/journal.pgen.1006446 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Symer DE, Connelly C, Szak ST et al (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–328CrossRefPubMedGoogle Scholar
  25. 25.
    Beck CR, Garcia-Perez JL, Badge RM et al (2011) LINE-I elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Valton AL, Dekker J (2016) TAD disruption as oncogenic driver. Curr Opin Genet Dev 36:34–40CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lupianez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 33(4):225–237CrossRefGoogle Scholar
  28. 28.
    Middelkamp S, van Heesch S, Braat AK et al (2017) Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med 9(1):9.  https://doi.org/10.1186/s13073-017-0399-z CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Collins RL, Brand H, Redin CE et al (2017) Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol 18(1):36.  https://doi.org/10.1186/s13059-017-1158-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tan EH, Henry IM, Ravi M et al (2015) Catastrophic chromosomal restructuring during genome elimination in plants. elife 4:e06516.  https://doi.org/10.7554/eLife.06516 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Froment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663–670CrossRefGoogle Scholar
  32. 32.
    Notta F, Chang-Seng-Yue M, Lemire M et al (2016) A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538(7625):378–382CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96(4):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 18(5):494–500.  https://doi.org/10.1038/gim.2015.112 CrossRefPubMedGoogle Scholar
  35. 35.
    Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91:653–660CrossRefPubMedGoogle Scholar
  36. 36.
    McDermott DH, Gao JL, Liu Q et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160:686–699CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sheldon PR (1990) Shaking up evolutionary patterns. Nature 345:772CrossRefGoogle Scholar
  38. 38.
    Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from microcebus murinus (prosimian) to man. Hum Genet 48:251–314CrossRefPubMedGoogle Scholar
  39. 39.
    Britton-Davidian J, Catalan J, Ramalhinho M et al (2000) Rapid chromosomal evolution in island mice. Nature 403:158CrossRefPubMedGoogle Scholar
  40. 40.
    Noor MAF, Grams KL, Bertucci LA et al (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A 98:12084–12088CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yunis JJ, Sawyer JR, Dunham K (1980) The striking resemblance of high-resolution g-banded chromosomes of man and chimpanzee. Science 208:145–1148CrossRefGoogle Scholar
  42. 42.
    Newman TL, Tuzun E, Morrison VA et al (2005) A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15:1344–1356CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dennis MY, Harshman L, Nelson BJ et al (2017) The evolution and population diversity of human-specific segmental duplications. Nat Ecol Evol 1:0069.  https://doi.org/10.1038/s41559-016-0069 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Carbone L, Harris RA, Gnerre S et al (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lässig M, Mustonen V, Walczak AM (2017) Predicting evolution. Nat Ecol Evol 1:0077.  https://doi.org/10.1038/s41559-017-0077 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Chromosomal Genetics, Department of Medical GeneticsArnaud de Villeneuve Hospital, Montpellier CHRUMontpellierFrance
  2. 2.INSERM U1183 Unit “Genome and Stem Cell Plasticity in Development and Ageing”Institute for Regenerative Medicine and Biotherapy, St Eloi HospitalMontpellierFrance

Personalised recommendations