Potential Role of Chromothripsis in the Genesis of Complex Chromosomal Rearrangements in Human Gametes and Preimplantation Embryo

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)

Abstract

The discovery of a new class of massive chromosomal rearrangement, baptized chromothripsis, in different cancers and congenital disorders has deeply modified our understanding on the genesis of complex genomic rearrangements. Several mechanisms, involving abortive apoptosis, telomere erosion, mitotic errors, micronuclei formation, and p53 inactivation, might cause chromothripsis. The remarkable point is that all these plausible mechanisms have been identified in the field of human reproduction as causal factors for reproductive failures and chromosomal abnormality genesis. Specific features of gametogenesis and early embryonic development may contribute to the emergence of chromothripsis. Multiple lines of evidence support the assumption that chromothripsis may arise more frequently than previously thought in both gametogenesis and early human embryogenesis.

Key words

Chromothripsis Massive chromosomal rearrangement Spermatogenesis Oogenesis Fertilization Embryo 

Notes

Acknowledgments

Work in the unit of Chromosomal Genetics is supported by the CHU research platform ChromoStem (http://www.chu-montpellier.fr/fr/chercheurs/plateformes/les-plateformes-recherche/chromostem/).

References

  1. 1.
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Magrangeas F, Avet-Loiseau H, Munshi NC et al (2011) Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118:675–678CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rode A, Maass KK, Willmund KV et al (2016) Chromothripsis in cancer cells: an update. Int J Cancer 138:2322–2333CrossRefPubMedGoogle Scholar
  4. 4.
    Kloosterman WP, Gurvey V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20:1916–1924CrossRefPubMedGoogle Scholar
  5. 5.
    Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–998CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    De Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96:651–656CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tubio JMC, Estivill X (2011) When catastrophe strikes a cell. Nature 470:476–477CrossRefPubMedGoogle Scholar
  8. 8.
    Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mardin BR, Drainas AP, Waszak SM et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11:828.  https://doi.org/10.15252/msb.20156505 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Maciejowski j LY, Bosco N et al (2015) Chromothripsis and Kataegis induced by telomere crisis. Cell 163:1641–1654CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102:1785–1796CrossRefPubMedGoogle Scholar
  13. 13.
    Daughtry BL, Chavez SL (2016) Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 363:201–225CrossRefPubMedGoogle Scholar
  14. 14.
    Pellestor F (2014) Chromothripsis: how does such a catastrophic event impact human reproduction ? Hum Reprod 29:388–393CrossRefPubMedGoogle Scholar
  15. 15.
    Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91:653–660CrossRefPubMedGoogle Scholar
  16. 16.
    Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ivkov R, Bunz F (2015) Pathways to chromothripsis. Cell Cycle 14:2886–2890CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236CrossRefPubMedGoogle Scholar
  19. 19.
    Kloosterman WP, Cuppen E (2013) Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 25:341–348CrossRefPubMedGoogle Scholar
  20. 20.
    Yang J, Liu J, Ouyang L et al (2016) CTLP scanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 44(W1):W252–W258.  https://doi.org/10.1093/nar/gkw434 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen M et al (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1:648–655CrossRefPubMedGoogle Scholar
  22. 22.
    Macera MJ, Sobrino A, Levy B et al (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35:299–301CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 15:494–500CrossRefGoogle Scholar
  24. 24.
    Anderson SE, Kamath A, Pilz DT et al (2016) A rare example of germ-line chromothripsis resulting in large genomic imbalance. Clin Dysmorphol 25:58–62CrossRefPubMedGoogle Scholar
  25. 25.
    Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–1036CrossRefPubMedGoogle Scholar
  26. 26.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241CrossRefPubMedGoogle Scholar
  27. 27.
    Tang HL, Tang HM, Mak KH et al (2012) Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell 23:2240–2252CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sakkas D, Seli E, Bizzaro D et al (2003) Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodeling during spermatogenesis. Reprod Biomed Online 7:428–432CrossRefPubMedGoogle Scholar
  29. 29.
    Jones MJK, Jallepalli PV (2012) Chromothripsis: chromosomes in crisis. Dev Cell 23:908–917CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Delhanty JDA, Pellestor F (eds) (2011) Aneuploidy. Cytogenet Genome Res 133:2–4Google Scholar
  31. 31.
    Baarends WM, van der Laan R, Grootegoed A (2001) DNA repair mechanisms and gametogenesis. Reproduction 121:31–39CrossRefPubMedGoogle Scholar
  32. 32.
    Oliver-Bonnet M, Ko E, Martin RH (2005) Male infertility in reciprocal translocation carriers: the sex body affair. Cytogenet Genome Res 111:434–346CrossRefGoogle Scholar
  33. 33.
    Martin RH (2008) Cytogenetic determinants of male fertility. Hum Reprod Update 14:379–390CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Aoki VW, Liu L, Carrell DT (2005) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306CrossRefPubMedGoogle Scholar
  35. 35.
    Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435CrossRefPubMedGoogle Scholar
  36. 36.
    Carroll J, Marangos P (2013) The DNA damage response in mammalian oocytes. Front Genet 4:1–9CrossRefGoogle Scholar
  37. 37.
    Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends Genet 24:86–93CrossRefPubMedGoogle Scholar
  38. 38.
    Marchetti F, Essers J, Kanaar R et al (2007) Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A 104:17725–17729CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jaroudi S, Kakourou G, Cawood S et al (2009) Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod 24:2649–2655CrossRefPubMedGoogle Scholar
  40. 40.
    Steuerwald N (2005) Meiotic spindle checkpoints for assessment of aneuploid oocytes. Cytogenet Genome Res 111:256–259CrossRefPubMedGoogle Scholar
  41. 41.
    Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186CrossRefPubMedGoogle Scholar
  42. 42.
    Pellestor F, Anahory T, Hamamah S (2005) The chromosomal analysis of human oocytes. An overview of established procedures. Hum Reprod Update 11:15–32CrossRefPubMedGoogle Scholar
  43. 43.
    McLay DW, Clarke HJ (2003) Remodeling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ahmadi A, Ng SC (1999) Developmental capacity of damaged spermatozoa. Hum Reprod 14:2279–2285CrossRefPubMedGoogle Scholar
  45. 45.
    Eichenlaub-Ritter U, Schmiady H, Kentenich H et al (1995) Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod 10:2343–2349CrossRefPubMedGoogle Scholar
  46. 46.
    Meyerson M, Pellman D (2011) Cancer genomes evolve by pulverizing single chromosome. Cell 144:9–10CrossRefPubMedGoogle Scholar
  47. 47.
    Lebedev I (2011) Mosaic aneuploidy in early fetal losses. Cytogenet Genome Res 133:169–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Chromosomal Genetics, Department of Medical GeneticsArnaud de Villeneuve Hospital, Montpellier CHRUMontpellierFrance
  2. 2.INSERM U1183 Unit “Genome and Stem Cell Plasticity in Development and Ageing”Institute for Regenerative Medicine and Biotherapy, St Eloi HospitalMontpellierFrance

Personalised recommendations