Chromothripsis pp 337-352 | Cite as

Experimental Induction of Genome Chaos

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)

Abstract

Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including “chromothripsis,” “chromoplexy,” and “structural mutations.” To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.

Key words

Chromosomal or karyotype coding Chromosome instability (CIN) Chromothripsis Genome chaos Genome theory Macro-cellular evolution Punctuated cancer evolution 

Notes

Acknowledgments

This manuscript is part of our series of publications on the subject of “the mechanisms of cancer and organismal evolution.” This work was also partially supported by the start-up fund for Christine J. Ye from the Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan. Thanks to Julie Heng for editing.

References

  1. 1.
    Heng HH (2015) Debating cancer: the paradox in cancer research. World Scientific, SingaporeCrossRefGoogle Scholar
  2. 2.
    Heng HH, Stevens JB, Liu G et al (2004) Imaging genome abnormalities in cancer research. Cell Chromosome 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Heng HH, Stevens JB, Liu G et al (2006) Stochastic cancer progression driven by nonclonal chromosome aberrations. J Cell Physiol 208:461–472CrossRefPubMedGoogle Scholar
  4. 4.
    Heng HH, Stevens JB, Bremer SW et al (2011) Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 112:217–253CrossRefPubMedGoogle Scholar
  5. 5.
    Heng HH, Liu G, Stevens JB et al (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 98(4):242–252CrossRefPubMedGoogle Scholar
  6. 6.
    Heng HH, Bremer SW, Stevens JB et al (2013) Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 32(3–4):325–340CrossRefPubMedGoogle Scholar
  7. 7.
    Heng HH, Liu G, Stevens JB et al (2013) Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet Genome Res 139(3):144–157CrossRefPubMedGoogle Scholar
  8. 8.
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Horne SD, Heng HH (2014) Genome chaos, chromothripsis and cancer evolution. J Cancer Stud Ther 1:1–6Google Scholar
  10. 10.
    Heng HH (2017) Cancer genomic landscape. In: Ujvari B, Roche B, Thomas F (eds) Ecology and evolution of cancer. Academic Press, Elsevier, pp 69–86CrossRefGoogle Scholar
  11. 11.
    Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153(3):666–677CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663–670CrossRefPubMedGoogle Scholar
  14. 14.
    Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18(11):1630–1638CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Inaki K, Liu ET (2012) Structural mutations in cancer: mechanistic and functional insights. Trends Genet 28(11):550–559CrossRefPubMedGoogle Scholar
  16. 16.
    Jones MJ, Jallepalli PV (2012) Chromothripsis: chromosomes in crisis. Dev Cell 23(5):908–917CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Malhotra A, Lindberg M, Faust GG et al (2013) Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res 23:762–776CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Righolt C, Mai S (2012) Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Genes Chromosomes Cancer 51(11):975–981CrossRefPubMedGoogle Scholar
  20. 20.
    Setlur SR, Lee C (2012) Tumor archaeology reveals that mutations love company. Cell 149(9):959–961CrossRefPubMedGoogle Scholar
  21. 21.
    Tubio JM, Estivill X (2011) Cancer: when catastrophe strikes a cell. Nature 470(7335):476–477CrossRefPubMedGoogle Scholar
  22. 22.
    Heng HH (2007) Karyotypic chaos, a form of non-clonal chromosome aberrations, plays a key role for cancer progression and drug resistance. FASEB: Nuclear Structure and Cancer. Vermont Academy, Saxtons River, VTGoogle Scholar
  23. 23.
    Duesberg P (2007) Chromosomal chaos and cancer. Sci Am 296(5):52–59Google Scholar
  24. 24.
    Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T (2015) Chromothripsis and Kataegis induced by telomere crisis. Cell 163(7):1641–1654CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Morishita M, Muramatsu T, Suto Y et al (2016) Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 7(9):10182–10192CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mardin BR, Drainas AP, Waszak SM et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11(9):828CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stevens JB, Liu G, Bremer SW et al (2007) Mitotic cell death by chromosome fragmentation. Cancer Res 67(16):7686–7694CrossRefPubMedGoogle Scholar
  29. 29.
    Stevens JB, Abdallah BY, Liu G et al (2011) Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2:e178CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stevens JB, Abdallah BY, Liu G et al (2013) Heterogeneity of cell death. Cytogenet Genome Res 139(3):164–173CrossRefPubMedGoogle Scholar
  31. 31.
    Ye CJ, Stevens JB, Liu G et al (2009) Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer. J Cell Physiol 219(2):288–300CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Horne SD, Chowdhury SK, Heng HH (2014) Stress, genomic adaptation, and the evolutionary trade-off. Front Genet 5:92CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Heng HH, Regan S, Ye CJ (2016) Genotype, environment, and evolutionary mechanism of diseases. Environ Dis 1:14–23CrossRefGoogle Scholar
  34. 34.
    Heng HH (2007) Cancer genome sequencing: the challenges ahead. BioEssays 29(8):783–794CrossRefPubMedGoogle Scholar
  35. 35.
    Heng HH (2009) The genome-centric concept: resynthesis of evolutionary theory. BioEssays 31(5):512–525CrossRefPubMedGoogle Scholar
  36. 36.
    Horne SD, Ye CJ, Heng HH (2015) Chromosomal instability (CIN) in cancer. eLS:1–9Google Scholar
  37. 37.
    Horne SD, Pollick SA, Heng HH (2015) Evolutionary mechanism unifies the hallmarks of cancer. Int J Cancer 136(9):2012–2021CrossRefPubMedGoogle Scholar
  38. 38.
    Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell Cycle 13(4):528–537CrossRefPubMedGoogle Scholar
  39. 39.
    Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Heng HH (2011) Missing heritability and stochastic genome alterations. Nat Rev Genet 11(11):813Google Scholar
  41. 41.
    Stevens JB, Liu G, Abdallah BY et al (2014) Unstable genomes elevate transcriptome dynamics. Int J Cancer 134(9):2074–2087CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stepanenko AA, Kavsan VM (2012) Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory. Biopolym Cell 28(4):267–280CrossRefGoogle Scholar
  43. 43.
    Duesberg P, McCormack A (2013) Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle 12(5):783–802CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Poot M, Haaf T (2015) Mechanisms of origin, phenotypic effects and diagnostic implications of complex chromosome rearrangements. Mol Syndromol 6:109–133Google Scholar
  45. 45.
    Li P, Cui C (2016) A broader view of cancer cytogenetics: from nuclear aberrations to cytogenetic abnormalities. J Mol Genet Med 10:e108CrossRefGoogle Scholar
  46. 46.
    Poot M (2017) Of simple and complex genome rearrangements, chromothripsis, chromoanasynthesis, and chromosome chaos. Mol Syndromol 8:115–117CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Heng HH, Regan SM, Liu G et al (2016) Why is it crucial to analyze non clonal chromosomal aberrations or NCCAs? Mol Cytogenet 9:15CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rangel N, Forero-Castro M, Rondón-Lagos M (2017) New insights in the cytogenetic practice: karyotypic chaos, non-clonal chromosomal alterations and chromosomal instability in human cancer and therapy response. Genes (Basel) 8(6):E155CrossRefGoogle Scholar
  49. 49.
    Heng HH, Horne SD, Chaudhry S et al (2018) A postgenomic perspective on molecular cytogenetics. Current Genomics (in press)Google Scholar
  50. 50.
    Heng HH, Squire J, Tsui LC (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A 89(20):9509–9513CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Heng HH, Tsui LC, Moens PB (1994) Organization of heterologous DNA inserts on the mouse meiotic chromosome core. Chromosoma 103(6):401–407CrossRefPubMedGoogle Scholar
  52. 52.
    Ye CJ, Heng HH (2017) High resolution fiber-fluorescence in situ hybridization. Methods Mol Biol 1541:151–166CrossRefPubMedGoogle Scholar
  53. 53.
    Ye CJ, Liu G, Heng HH (2016) Simultaneous fluorescence immunostaining and FISH. In: Liehr T (ed) Fluorescence in situ hybridization (FISH). Springer, New York, pp 301–325Google Scholar
  54. 54.
    Heng HH, Ye CJ, Yang F et al (2003) Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization. Clin Genet 63(5):358–367CrossRefPubMedGoogle Scholar
  55. 55.
    Ye CJ, Lu W, Liu G et al (2001) The combination of SKY and specific loci detection with FISH or immunostaining. Cytogenet Cell Genet 93(3–4):195–202CrossRefPubMedGoogle Scholar
  56. 56.
    Heng HH (2018) Genome chaos: rethinking genomics, evolution and molecular medicine. Academic Press, Elsevier, (in press)Google Scholar
  57. 57.
    Gorelick R, Heng HH (2011) Sex reduces genetic variation: a multidisciplinary review. Evolution 65(4):1088–1098CrossRefPubMedGoogle Scholar
  58. 58.
    Heng HH, Horne SD, Stevens SB et al (2016) Heterogeneity mediated system complexity: the ultimate challenge for studying common and complex diseases. In: Sturmberg JP (ed) The value of systems and complexity sciences for healthcare. Springer, New York, pp 107–120CrossRefGoogle Scholar
  59. 59.
    Heng HH (2017) Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases. J Eval Clin Pract 23(1):233–237CrossRefPubMedGoogle Scholar
  60. 60.
    Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102(6):1785–1796CrossRefPubMedGoogle Scholar
  61. 61.
    Furgason JM, Koncar RF, Michelhaugh SK et al (2015) Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience 2(7):618–628. eCollectionCrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    de Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96(4):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pellestor F (2014) Chromothripsis: how does such a catastrophic event impact human reproduction? Hum Reprod 29(3):388–393CrossRefPubMedGoogle Scholar
  64. 64.
    McDermott DH, Gao JL, Liu Q et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160(4):686–699CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Division of Hematology/Oncology, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Center for Molecular Medicine and Genomics, Wayne State University School of MedicineDetroitUSA
  3. 3.Department of PathologyWayne State University School of MedicineDetroitUSA

Personalised recommendations