Skip to main content

Chromothripsis Detection and Characterization Using the CTLPScanner Web Server

  • Protocol
  • First Online:
Book cover Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Accurate detection of chromothripsis event is important to study the mechanisms underlying this phenomenon. CTLPScanner (http://cgma.scu.edu.cn/CTLPScanner/) is a web-based tool for identification and annotation of chromothripsis-like pattern (CTLP) in genomic array data. In this chapter, we illustrate the utility of CTLPScanner for screening chromosome pulverization regions and give interpretation of the results. The web interface offers a set of parameters and thresholds for customized screening. We also provide practical recommendations for effective chromothripsis detection. In addition to the user data processing module, CTLPScanner contains more than 50,000 preprocessed oncogenomic arrays, which allow users to explore the presence of chromothripsis signatures from public data resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670

    Article  CAS  PubMed  Google Scholar 

  3. Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rausch T, Jones DT, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kloosterman WP, Hoogstraat M, Paling O et al (2011) Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12:R103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Molenaar JJ, Koster J, Zwijnenburg DA et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Schwab C, Ryan SL et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magrangeas F, Avet-Loiseau H, Munshi NC et al (2011) Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118:675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirsch D, Kemmerling R, Davis S et al (2013) Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res 73:1454–1460

    Article  CAS  PubMed  Google Scholar 

  10. Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236

    Article  CAS  PubMed  Google Scholar 

  11. Govind SK, Zia A, Hennings-Yeomans PH et al (2014) ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinformatics 15:78

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang J, Liu J, Ouyang L et al (2016) CTLPScanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 44(W1):W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naus JI (1965) The distribution of the size of the maximum cluster of points on a line. J Am Stat Assoc 60:532–538

    Article  Google Scholar 

  14. Cai H, Kumar N, Bagheri HC et al (2014) Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 15:82

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  17. Olshen AB, Venkatraman ES, Lucito R et al (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572

    Article  PubMed  Google Scholar 

  18. Hupé P, Stransky N, Thiery JP et al (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20:3413–3422

    Article  PubMed  Google Scholar 

  19. Nilsen G, Liestol K, Van Loo P et al (2012) Copynumber: efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics 13:591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai H, Gupta S, Rath P et al (2015) arrayMap 2014: an updated cancer genome resource. Nucleic Acids Res 43:D825–D830

    Article  CAS  PubMed  Google Scholar 

  21. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811

    Article  CAS  PubMed  Google Scholar 

  22. Mardin BR, Drainas AP, Waszak S et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11:828

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ernst A, Jones DT, Maass KK et al (2016) Telomere dysfunction and chromothripsis. Int J Cancer 138:2905–2914

    Article  CAS  PubMed  Google Scholar 

  24. Harrison CJ (2015) Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood 125:1383–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China [grant number 31571314 and U1603120].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyang Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, J., Liu, B., Cai, H. (2018). Chromothripsis Detection and Characterization Using the CTLPScanner Web Server. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics