Chromothripsis pp 265-278 | Cite as

Chromothripsis Detection and Characterization Using the CTLPScanner Web Server

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)

Abstract

Accurate detection of chromothripsis event is important to study the mechanisms underlying this phenomenon. CTLPScanner (http://cgma.scu.edu.cn/CTLPScanner/) is a web-based tool for identification and annotation of chromothripsis-like pattern (CTLP) in genomic array data. In this chapter, we illustrate the utility of CTLPScanner for screening chromosome pulverization regions and give interpretation of the results. The web interface offers a set of parameters and thresholds for customized screening. We also provide practical recommendations for effective chromothripsis detection. In addition to the user data processing module, CTLPScanner contains more than 50,000 preprocessed oncogenomic arrays, which allow users to explore the presence of chromothripsis signatures from public data resources.

Key words

Chromothripsis detection CTLPScanner Web server Metadata analysis SNP array Array CGH Chromosome pulverization 

Notes

Acknowledgments

This work was funded by the National Natural Science Foundation of China [grant number 31571314 and U1603120].

References

  1. 1.
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670CrossRefPubMedGoogle Scholar
  3. 3.
    Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rausch T, Jones DT, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kloosterman WP, Hoogstraat M, Paling O et al (2011) Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12:R103CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Molenaar JJ, Koster J, Zwijnenburg DA et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593CrossRefPubMedGoogle Scholar
  7. 7.
    Li Y, Schwab C, Ryan SL et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Magrangeas F, Avet-Loiseau H, Munshi NC et al (2011) Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118:675–678CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hirsch D, Kemmerling R, Davis S et al (2013) Chromothripsis and focal copy number alterations determine poor outcome in malignant melanoma. Cancer Res 73:1454–1460CrossRefPubMedGoogle Scholar
  10. 10.
    Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236CrossRefPubMedGoogle Scholar
  11. 11.
    Govind SK, Zia A, Hennings-Yeomans PH et al (2014) ShatterProof: operational detection and quantification of chromothripsis. BMC Bioinformatics 15:78CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang J, Liu J, Ouyang L et al (2016) CTLPScanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 44(W1):W252–W258CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Naus JI (1965) The distribution of the size of the maximum cluster of points on a line. J Am Stat Assoc 60:532–538CrossRefGoogle Scholar
  14. 14.
    Cai H, Kumar N, Bagheri HC et al (2014) Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 15:82CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991–D995CrossRefPubMedGoogle Scholar
  17. 17.
    Olshen AB, Venkatraman ES, Lucito R et al (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572CrossRefPubMedGoogle Scholar
  18. 18.
    Hupé P, Stransky N, Thiery JP et al (2004) Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20:3413–3422CrossRefPubMedGoogle Scholar
  19. 19.
    Nilsen G, Liestol K, Van Loo P et al (2012) Copynumber: efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics 13:591CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cai H, Gupta S, Rath P et al (2015) arrayMap 2014: an updated cancer genome resource. Nucleic Acids Res 43:D825–D830CrossRefPubMedGoogle Scholar
  21. 21.
    Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811CrossRefPubMedGoogle Scholar
  22. 22.
    Mardin BR, Drainas AP, Waszak S et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11:828CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ernst A, Jones DT, Maass KK et al (2016) Telomere dysfunction and chromothripsis. Int J Cancer 138:2905–2914CrossRefPubMedGoogle Scholar
  24. 24.
    Harrison CJ (2015) Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood 125:1383–1386CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life SciencesSichuan UniversityChengduChina
  2. 2.State Key Laboratory of BiotherapyCollaborative Innovation Center of Biotherapy, West China Hospital, Sichuan UniversityChengduChina

Personalised recommendations