Advertisement

Chromothripsis pp 253-262 | Cite as

Expression of Genes Associated with Telomere Homeostasis in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability

  • Oumar Samassekou
  • Nathalie Bastien
  • Ju Yan
  • Sabine Mai
  • Régen Drouin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)

Abstract

We describe a method that assesses the impact of specific mutations of TP53 and genomic instability on gene expression of the most important genes involved in telomere length and structure homeostasis. The approaches consist of using a reverse transcriptase method and a quantitative PCR that were applied to isogenic cell lines from a colon cancer.

Key words

Telomere Genomic instability Telomerase Shelterin Telomere-associated gene Reverse transcriptase Quantitative PCR 

References

  1. 1.
    Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39:243–250.  https://doi.org/10.1038/ng1952 CrossRefPubMedGoogle Scholar
  2. 2.
    De Lange T, Shiue L, Myers RM et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Moyzis RK, Buckingham JM, Cram LS et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chong L, van Steensel B, Broccoli D et al (1995) A human telomeric protein. Science 270:1663–1667CrossRefPubMedGoogle Scholar
  5. 5.
    Lejnine S, Makarov VL, Langmore JP (1995) Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc Natl Acad Sci U S A 92:2393–2397CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Counter CM, Avilion AA, LeFeuvre CE et al (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakamura TM, Morin GB, Chapman KB et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao YM, Li JY, Lan JP et al (2008) Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 369:1114–1119.  https://doi.org/10.1016/j.bbrc.2008.03.011 CrossRefPubMedGoogle Scholar
  9. 9.
    Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20:5532CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Munoz-Jordan JL, Cross GA, de Lange T, Griffith JD (2001) T-loops at trypanosome telomeres. EMBO J 20:579CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    De Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5:323CrossRefPubMedGoogle Scholar
  12. 12.
    Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336:593–597.  https://doi.org/10.1126/science.1218498; CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–890.  https://doi.org/10.1038/ncb1444 CrossRefPubMedGoogle Scholar
  14. 14.
    Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448:1068–1071.  https://doi.org/10.1038/nature06065 CrossRefPubMedGoogle Scholar
  15. 15.
    Sfeir A, Kosiyatrakul ST, Hockemeyer D et al (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103.  https://doi.org/10.1016/j.cell.2009.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Takai KK, Kibe T, Donigian JR et al (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44:647–659.  https://doi.org/10.1016/j.molcel.2011.08.043; CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18:175–186.  https://doi.org/10.1038/nrm.2016.171 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Romanov SR, Kozakiewicz BK, Holst CR et al (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637.  https://doi.org/10.1038/35054579 CrossRefPubMedGoogle Scholar
  19. 19.
    Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776.  https://doi.org/10.1016/j.ccr.2012.03.044 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93.  https://doi.org/10.1016/j.cell.2010.01.031 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806.  https://doi.org/10.1038/nrg3317 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Righolt C, Mai S (2012) Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Genes Chromosomes Cancer 51:975–981.  https://doi.org/10.1002/gcc.21981 CrossRefPubMedGoogle Scholar
  23. 23.
    Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71.  https://doi.org/10.1016/j.cell.2011.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Samassekou O, Bastien N, Lichtensztejn D et al (2014) Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes Chromosomes Cancer 53:934–950.  https://doi.org/10.1002/gcc.22205 CrossRefPubMedGoogle Scholar
  25. 25.
    Pocard M, Chevillard S, Villaudy J et al (1996) Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Oncogene 12:875–882PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oumar Samassekou
    • 1
  • Nathalie Bastien
    • 2
  • Ju Yan
    • 3
  • Sabine Mai
    • 4
  • Régen Drouin
    • 5
  1. 1.3D Signatures Holdings Inc. MaRS CentreTorontoCanada
  2. 2.Laboratoire D’anatomopathologie et de Cytologie, Laboratoires médicaux de la Capitale Nationale et des ÎlesQuébecCanada
  3. 3.Cytogenetics and Molecular Cytogenetics Laboratory, Beijing Boren HospitalBeijingChina
  4. 4.Department of Physiology and Pathophysiology, Cell BiologyResearch Institute of Oncology and Hematology, CancerCare Manitoba, University of ManitobaWinnipegCanada
  5. 5.Division of Medical Genetics, Department of PediatricsLaval University and Centre hospitalier universitaire de QuébecQuebec CityCanada

Personalised recommendations