Skip to main content

Expression of Genes Associated with Telomere Homeostasis in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

  • 1645 Accesses

Abstract

We describe a method that assesses the impact of specific mutations of TP53 and genomic instability on gene expression of the most important genes involved in telomere length and structure homeostasis. The approaches consist of using a reverse transcriptase method and a quantitative PCR that were applied to isogenic cell lines from a colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39:243–250. https://doi.org/10.1038/ng1952

    Article  CAS  PubMed  Google Scholar 

  2. De Lange T, Shiue L, Myers RM et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moyzis RK, Buckingham JM, Cram LS et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chong L, van Steensel B, Broccoli D et al (1995) A human telomeric protein. Science 270:1663–1667

    Article  CAS  PubMed  Google Scholar 

  5. Lejnine S, Makarov VL, Langmore JP (1995) Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc Natl Acad Sci U S A 92:2393–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Counter CM, Avilion AA, LeFeuvre CE et al (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakamura TM, Morin GB, Chapman KB et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955

    Article  CAS  PubMed  Google Scholar 

  8. Zhao YM, Li JY, Lan JP et al (2008) Cell cycle dependent telomere regulation by telomerase in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 369:1114–1119. https://doi.org/10.1016/j.bbrc.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  9. Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20:5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Munoz-Jordan JL, Cross GA, de Lange T, Griffith JD (2001) T-loops at trypanosome telomeres. EMBO J 20:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5:323

    Article  PubMed  Google Scholar 

  12. Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336:593–597. https://doi.org/10.1126/science.1218498;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Celli GB, Denchi EL, de Lange T (2006) Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat Cell Biol 8:885–890. https://doi.org/10.1038/ncb1444

    Article  PubMed  Google Scholar 

  14. Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448:1068–1071. https://doi.org/10.1038/nature06065

    Article  CAS  PubMed  Google Scholar 

  15. Sfeir A, Kosiyatrakul ST, Hockemeyer D et al (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138:90–103. https://doi.org/10.1016/j.cell.2009.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takai KK, Kibe T, Donigian JR et al (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44:647–659. https://doi.org/10.1016/j.molcel.2011.08.043;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18:175–186. https://doi.org/10.1038/nrm.2016.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romanov SR, Kozakiewicz BK, Holst CR et al (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409:633–637. https://doi.org/10.1038/35054579

    Article  CAS  PubMed  Google Scholar 

  19. Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776. https://doi.org/10.1016/j.ccr.2012.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93. https://doi.org/10.1016/j.cell.2010.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806. https://doi.org/10.1038/nrg3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Righolt C, Mai S (2012) Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Genes Chromosomes Cancer 51:975–981. https://doi.org/10.1002/gcc.21981

    Article  CAS  PubMed  Google Scholar 

  23. Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71. https://doi.org/10.1016/j.cell.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samassekou O, Bastien N, Lichtensztejn D et al (2014) Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes Chromosomes Cancer 53:934–950. https://doi.org/10.1002/gcc.22205

    Article  CAS  PubMed  Google Scholar 

  25. Pocard M, Chevillard S, Villaudy J et al (1996) Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Oncogene 12:875–882

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régen Drouin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Samassekou, O., Bastien, N., Yan, J., Mai, S., Drouin, R. (2018). Expression of Genes Associated with Telomere Homeostasis in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics