The Genomic Characteristics and Origin of Chromothripsis

  • Alessio Marcozzi
  • Franck Pellestor
  • Wigard P. Kloosterman
Part of the Methods in Molecular Biology book series (MIMB, volume 1769)


In 2011 a phenomenon involving complex chromosomal rearrangements was discovered in cancer genomes. This phenomenon has been termed chromothripsis, on the basis of its chromosomal hallmarks, which point to an underlying process involving chromosome (chromo) shattering (thripsis). The prevailing hypothesis of cancer genome evolution as a gradual process of mutation and selection was challenged by the discovery of chromothripsis, because its patterns of chromosome rearrangement rather indicated an one-off catastrophic burst of genome rearrangement. The initial discovery of chromothripsis has led to many more examples of chromothripsis both in cancer genomes as well as in patients with congenital diseases and in the genomes of healthy individuals. Since then, a burning topic has been the study of the molecular mechanism that leads to chromothripsis. Cumulating evidence has shown that chromothripsis may result from lagging chromosomes encapsulated in micronuclei, as well as from telomere fusions followed by chromosome bridge formation. In this chapter, we will outline the genomic characteristics of chromothripsis, and we present genomic methodologies that enable the detection of chromothripsis. Furthermore, we will give an overview of recent insights into the mechanisms underlying chromothripsis.

Key words

Chromothripsis Chromoanasynthesis Chromoplexy Cancer Congenital disease Telomeres Micronuclei Next-generation sequencing 


  1. 1.
    Schwann T, Schleiden MJ, Smith H (1847) Microscopical researches into the accordance in the structure and growth of animals and plants. Translated from the German of Theodor Schwann, by Henry Smith. The Sydenham Society, LondonCrossRefGoogle Scholar
  2. 2.
    Schleiden MJ (1847) Contributions to phytogenesis. In: Schwann T, Schleiden MJ, Smith H (eds) Microscopical researches into the accordance in the structure and growth of animals and plants. Translated from the German of Theodor Schwann, by Henry Smith. The Sydenham Society, LondonGoogle Scholar
  3. 3.
    Virchow RLK (1860) Cellular pathology. De Witt RM, New YorkGoogle Scholar
  4. 4.
    Butschli O (1876) Studien über Die Ersten Entwicklungsvorgänge Der Eizelle, Die Zelltheilung Und Die Conjugation Der Infusorien. Winter C, Frankfurt a. MCrossRefGoogle Scholar
  5. 5.
    Sutton WS (1902) On the morphology of the chromosome group in Brachystola Magna. Biol Bull 4(1):24–39CrossRefGoogle Scholar
  6. 6.
    Boveri T (1904) Ergebnisse über Die Konstitution Der Chromatischen Substanz Des Zellkerns. Fischer G, JenaGoogle Scholar
  7. 7.
    Painter TS (1923) Further observation on the sex chromosomes of mammals. Science 58(1500):247–248CrossRefPubMedGoogle Scholar
  8. 8.
    Tjio JH, Levan A (1956) The chromosome number of man. Hereditas 42:1–6CrossRefGoogle Scholar
  9. 9.
    Lupski JR, de Oca-Luna RM, Slaugenhaupt S et al (1991) DNA duplication associated with Charcot-Marie-Tooth disease Type 1A. Cell 66(2):219–232CrossRefPubMedGoogle Scholar
  10. 10.
    Carvalho CMB, Ramocki MB, Pehlivan D et al (2011) Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 43(11):1074–1081CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Carvalho CMB, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17(4):224–238CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nambiar M, Raghavan SC (2011) How does DNA break during chromosomal translocations? Nucleic Acids Res 39(14):5813–5825CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Küppers R, Dalla-Favera R (2001) Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20(40):5580–5594CrossRefPubMedGoogle Scholar
  14. 14.
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152(6):1226–1236CrossRefPubMedGoogle Scholar
  17. 17.
    Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen M et al (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1(6):648–655CrossRefPubMedGoogle Scholar
  18. 18.
    Behjati S, Tarpey PS, Haase K et al (2017) Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun 8(June):15936CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kloosterman WP, Koster J, Molenaar JJ (2014) Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol 26(1):64–72CrossRefPubMedGoogle Scholar
  20. 20.
    Malhotra A, Lindberg M, Faust GG et al (2013) Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res 23(5):762–776CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Erson-Omay EZ, Henegariu O, Bülent Omay S et al (2017) Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Med 9(1):12CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cai H, Kumar N, Bagheri HC et al (2014) Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 15(January):82CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang J, Liu J, Ouyang L et al (2016) CTLP scanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 44(W1):W252–W258CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Costa JL, Meijer G, Ylstra B et al (2008) Array comparative genomic hybridization copy number profiling: a new tool for translational research in solid malignancies. Semin Radiat Oncol 18(2):98–104CrossRefPubMedGoogle Scholar
  25. 25.
    Lassmann S, Weis R, Makowiec F et al (2007) Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 85(3):293–304CrossRefPubMedGoogle Scholar
  26. 26.
    Buffart TE, Tijssen M, Krugers T et al (2007) DNA quality assessment for array CGH by isothermal whole genome amplification. Cell Oncol 29(4):351–359PubMedPubMedCentralGoogle Scholar
  27. 27.
    LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37(13):4181–4193CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363–376CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148(1–2):59–71CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nones K, Waddell N, Wayte N et al (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 5(October):5224CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheng C, Zhou Y, Li H et al (2016) Whole-genome sequencing reveals diverse models of structural variations in esophageal squamous cell carcinoma. Am J Hum Genet 98(2):256–274CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kloosterman WP, Guryev V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924CrossRefPubMedGoogle Scholar
  35. 35.
    Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44(4):390–397CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Redin C, Brand H, Collins RL et al (2017) The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet 49(1):36–45CrossRefPubMedGoogle Scholar
  37. 37.
    Collins RL, Brand H, Redin C et al (2017) Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol 18(1):36CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    de Pagter M, van Roosmalen MJ, Baas A et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96(4):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hehir-Kwa J, Marschall T, Kloosterman WP et al (2016) A high-quality reference panel reveals the complexity and distribution of structural genome changes in a human population. Nat Commun 7:12989. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kloosterman WP, Cuppen E (2013) Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 25(3):341–348CrossRefPubMedGoogle Scholar
  41. 41.
    Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18(11):1630–1638CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Liu P, Erez A, Sreenath Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shen MM (2013) Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 23(5):567–569CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhang CZ, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27(23):2513–2530CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang F, Khajavi M, Connolly A et al (2009) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 41(7):849–853CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang K, Wang Y, Collins CC (2013) Chromoplexy: a new paradigm in genome remodeling and evolution. Asian J Androl 15(6):711–712CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153(3):666–677CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kim TM, Xi R, Luquette LJ et al (2012) Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res 23(2):217–227CrossRefPubMedGoogle Scholar
  50. 50.
    Mandahl N, Magnusson L, Nilsson J et al (2017) Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet 10:25. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gu H, Jiang JH, Li JY et al (2013) A familial cri-du-chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis. PLoS One 8(10):e76985CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Morishita M, Muramatsu T, Suto Y et al (2016) Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system. Oncotarget 7(9):10182–10192CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stevens JB, Abdallah BY, Liu G et al (2011) Diverse system stresses: common mechanisms of chromosome fragmentation. Cell Death Dis 2(June):e178CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hatch EM, Fischer AH, Deerinck TJ et al (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154(1):47–60CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Terzoudi G, Karakosta M, Pantelias A et al (2015) Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at dna sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Mutat Res Genet Toxicol Environ Mutagen 793:185–198CrossRefPubMedGoogle Scholar
  57. 57.
    Rao PN, Johnson RT (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225(5228):159–164CrossRefPubMedGoogle Scholar
  58. 58.
    Terradas M, Martín M, Laura Tusell L et al (2010) Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat Res 705(1):60–67CrossRefPubMedGoogle Scholar
  59. 59.
    Ly P, Teitz LS, Kim DH et al (2017) Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 19(1):68–75CrossRefPubMedGoogle Scholar
  60. 60.
    de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110CrossRefPubMedGoogle Scholar
  61. 61.
    Rodriguez R, Müller S, Yeoman JA et al (2008) A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc 130(47):15758–15759CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hockemeyer D, Collins K (2015) Control of telomerase action at human telomeres. Nat Struct Mol Biol 22(11):848–852CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Titen SWA, Golic KG (2008) Telomere loss provokes multiple pathways to apoptosis and produces genomic instability in drosophila melanogaster. Genetics 180(4):1821–1832CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lowden MR, Meier B, Lee T et al (2008) End joining at caenorhabditis elegans telomeres. Genetics 180(2):741–754CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Boukamp P, Popp S, Krunic D (2005) Telomere-dependent chromosomal instability. J Investig Dermatol Symp Proc 10(2):89–94CrossRefPubMedGoogle Scholar
  66. 66.
    Gisselsson DL, Pettersson M, Höglund M et al (2000) Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci U S A 97(10):5357–5362CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bignell GR, Santarius T, Pole JCM et al (2007) Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res 17(9):1296–1303CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pampalona J, Roscioli E, Silkworth WT et al (2016) Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLoS One 11(1):e0147420CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li Y, Schwab C, Ryan SL et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508(7494):98–102CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Garsed DW, Marshall OJ, Corbin VDA et al (2014) The architecture and evolution of cancer neochromosomes. Cancer Cell 26(5):653–667CrossRefPubMedGoogle Scholar
  71. 71.
    Maciejowski J, Li Y, Bosco N et al (2015) Chromothripsis and kataegis induced by telomere crisis. Cell 163(7):1641–1654CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ratnaparkhe M, Hlevnjak M, Kolb T et al (2017) Genomic profiling of acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia 31(10):2048–2056. CrossRefPubMedGoogle Scholar
  73. 73.
    Notta F, Chan-Seng-Yue M, Lemire M et al (2016) A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538(7625):378–382CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Abaigar M, Robledo C, Benito R et al (2016) Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes. PLoS One 11(10):e0164370. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang JC, Fisker T, Sahoo T (2015) Constitutional chromothripsis involving chromosome 19 in a child with subtle dysmorphic features. Am J Med Genet A 167A(4):910–913CrossRefPubMedGoogle Scholar
  76. 76.
    Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 25(7):937–947CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 18(5):494–500CrossRefPubMedGoogle Scholar
  78. 78.
    Macera MJ, Sobrino A, Levy B et al (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35(5):299–301CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Daughtry BL, Chavez SL (2016) Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 363(1):201–225CrossRefPubMedGoogle Scholar
  80. 80.
    Mardin BR, Drainas AP, Waszak SM et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11(9):828. CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chen JM, Cooper D (2016) A mechanistic link between retrotransposition and chromothripsis. Hum Mutat 37(4):329. CrossRefPubMedGoogle Scholar
  82. 82.
    Middelkamps S, van Heesch S, Braat AK et al (2017) Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med 9(1):9. CrossRefGoogle Scholar
  83. 83.
    Righolt C, Mai S (2012) Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis ? Genes Chromosom Cancer 51(11):975–981CrossRefPubMedGoogle Scholar
  84. 84.
    Sozano CO, PAscual-Montano A, Sanchez de Diego A et al (2013) Chromothripsis: breakage-fusion-bridge over and over again. Cell Cycle 12(13):2916–2023Google Scholar
  85. 85.
    Kinsella M, Patel A, Bafna V (2014) The elusive evidence for chromothripsis. Nucleic Acids Res 42(13):8231–8242CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ivkov R, Bunz F (2015) Pathways to chromothripsis. Cell Cycle 14(18):2886–2890CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91(5):653–660CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alessio Marcozzi
    • 1
  • Franck Pellestor
    • 2
    • 3
  • Wigard P. Kloosterman
    • 1
  1. 1.Division of Biomedical Genetics, Department of GeneticsCenter for Molecular Medicine, University Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Laboratory of Chromosomal Genetics, Department of Medical GeneticsArnaud de Villeneuve Hospital, Montpellier CHRUMontpellierFrance
  3. 3.INSERM Unit Plasticity of the Genome and AgingInstitute of Functional GenomicsMontpellierFrance

Personalised recommendations