Skip to main content

Basic Concepts and Validation of Digital PCR Measurements

  • Protocol
  • First Online:
Digital PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1768))

Abstract

Use of digital polymerase chain reaction (dPCR) technology is rapidly growing and diversifying into a range of areas in life science. The release of dPCR commercial systems has facilitated access, leading to recognition of the potential advantages compared to previous quantitative PCR technologies, and the scope for novel applications. The capability of dPCR to deliver unprecedented levels of precision, accuracy, and resolution in quantification of nucleic acids has triggered a strong interest by academia and the life sciences industry in use of this technology as a molecular diagnostic tool. However, the performance of dPCR, as for a “classical” PCR assay, essentially still relies on enzyme-based amplification of nucleic acid using specific reagents and instrumentation. This chapter describes basic concepts, key properties, and important factors to consider for the verification and validation of dPCR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strain MC, Lada SM, Luong T et al (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8(4):e55943. https://doi.org/10.1371/journal.pone.0055943 [doi] PONE-D-12-26722 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang R, Paparini A, Monis P et al (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of cryptosporidium oocysts in faecal samples. Int J Parasitol 44(14):1105–1113. https://doi.org/10.1016/j.ijpara.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  3. Pond MJ, Nori AV, Patel S et al (2015) Performance evaluation of automated urine microscopy as a rapid, non-invasive approach for the diagnosis of non-gonococcal urethritis. Sex Transm Infect 91(3):165–170. https://doi.org/10.1136/sextrans-2014-051761

    Article  PubMed  Google Scholar 

  4. Devonshire AS, Honeyborne I, Gutteridge A et al (2015) Highly reproducible absolute quantification of mycobacterium tuberculosis complex by digital PCR. Anal Chem 87(7):3706–3713. https://doi.org/10.1021/ac5041617

    Article  CAS  PubMed  Google Scholar 

  5. Morisset D, Stebih D, Milavec M et al (2013) Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8(5):e62583. https://doi.org/10.1371/journal.pone.0062583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Floren C, Wiedemann I, Brenig B et al (2015) Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chem 173:1054–1058. https://doi.org/10.1016/j.foodchem.2014.10.138

    Article  CAS  PubMed  Google Scholar 

  7. Racki N, Dreo T, Gutierrez-Aguirre I et al (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10(1):42. https://doi.org/10.1186/s13007-014-0042-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao Y, Raith MR, Griffith JF (2015) Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water Res 70:337–349. https://doi.org/10.1016/j.watres.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  9. Kim TG, Jeong SY, Cho KS (2014) Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl Microbiol Biotechnol 98(13):6105–6113. https://doi.org/10.1007/s00253-014-5794-4

    Article  CAS  PubMed  Google Scholar 

  10. Day E, Dear PH, McCaughan F (2013) Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods (San Diego, Calif) 59(1):101–107. https://doi.org/10.1016/j.ymeth.2012.08.001

    Article  CAS  Google Scholar 

  11. Jennings LJ, George D, Czech J et al (2014) Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn 16(2):174–179. https://doi.org/10.1089/hgtb.2013.131 10.1016/j.jmoldx.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Regan JF, Kamitaki N, Legler T et al (2015) A rapid molecular approach for chromosomal phasing. PLoS One 10(3):e0118270. https://doi.org/10.1371/journal.pone.0118270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nadauld L, Regan JF, Miotke L et al (2012) Quantitative and sensitive detection of cancer genome amplifications from formalin fixed paraffin embedded tumors with droplet digital PCR. Transl Med (Sunnyvale, Calif) 2(2). https://doi.org/10.4172/2161-1025.1000107

  14. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C et al (2015) Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem 61(1):297–304. https://doi.org/10.1373/clinchem.2014.230235

    Article  CAS  PubMed  Google Scholar 

  15. Heredia NJ, Belgrader P, Wang S et al (2013) Droplet digital PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods 59(1):S20–S23. https://doi.org/10.1016/j.ymeth.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Murillas I, Lambros M, Turner NC (2013) Determination of HER2 amplification status on tumour DNA by digital PCR. PLoS One 8(12):e83409. https://doi.org/10.1371/journal.pone.0083409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beaver JA, Jelovac D, Balukrishna S et al (2014) Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res 20(10):2643–2650. https://doi.org/10.1158/1078-0432.ccr-13-2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barrett AN, McDonnell TC, Chan KC et al (2012) Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem 58(6):1026–1032. https://doi.org/10.1373/clinchem.2011.178939

    Article  CAS  PubMed  Google Scholar 

  19. Weber ND, Stone D, Sedlak RH et al (2014) AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One 9(5):e97579. https://doi.org/10.1371/journal.pone.0097579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyaoka Y, Chan AH, Judge LM et al (2014) Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods 11(3):291–293. https://doi.org/10.1038/nmeth.2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai J, Miao X, Li Y et al (2014) Whole-genome sequencing identifies genetic variances in culture-expanded human mesenchymal stem cells. Stem Cell Reports 3(2):227–233. https://doi.org/10.1016/j.stemcr.2014.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao S, Zheng C, Chang G et al (2015) Unique features of mutations revealed by sequentially reprogrammed induced pluripotent stem cells. Nat Commun 6:6318. https://doi.org/10.1038/ncomms7318

    Article  CAS  PubMed  Google Scholar 

  23. Beck J, Bierau S, Balzer S et al (2013) Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem 59(12):1732–1741. https://doi.org/10.1373/clinchem.2013.210328

    Article  CAS  PubMed  Google Scholar 

  24. George D, Czech J, John B et al (2013) Detection and quantification of chimerism by droplet digital PCR. Chimerism 4(3):102–108. https://doi.org/10.4161/chim.25400

    Article  PubMed  PubMed Central  Google Scholar 

  25. Halling KC, Schrijver I, Persons DL (2012) Test verification and validation for molecular diagnostic assays. Arch Pathol Lab Med 136(1):11–13. https://doi.org/10.5858/arpa.2011-0212-ED

    Article  PubMed  Google Scholar 

  26. Higuchi R, Dollinger G, Walsh PS et al (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10(4):413–417

    Article  CAS  PubMed  Google Scholar 

  27. Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6(10):986–994

    Article  CAS  PubMed  Google Scholar 

  28. McCrady MH (1915) The numerical interpretation of fermentation-tube results. J Infect Dis 17(1):183–212. https://doi.org/10.2307/30083495

    Article  Google Scholar 

  29. Simmonds P, Balfe P, Peutherer JF et al (1990) Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol 64(2):864–872

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brisco MJ, Condon J, Sykes PJ et al (1991) Detection and quantitation of neoplastic cells in acute lymphoblastic leukaemia, by use of the polymerase chain reaction. Br J Haematol 79(2):211–217

    Article  CAS  PubMed  Google Scholar 

  31. Sykes PJ, Neoh SH, Brisco MJ et al (1992) Quantitation of targets for PCR by use of limiting dilution. BioTechniques 13(3):444–449

    CAS  PubMed  Google Scholar 

  32. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96(16):9236–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584. https://doi.org/10.1126/science.1076996

    Article  CAS  PubMed  Google Scholar 

  34. Ottesen EA, Hong JW, Quake SR et al (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467. https://doi.org/10.1126/science.1131370. 314/5804/1464 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Warren L, Bryder D, Weissman IL et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci U S A 103(47):17807–17812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8):e2876

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bhat S, Herrmann J, Armishaw P et al (2009) Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal Bioanal Chem 394(2):457–467

    Article  CAS  PubMed  Google Scholar 

  38. Pinheiro LB, Coleman VA, Hindson CM et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011. https://doi.org/10.1021/ac202578x

    Article  CAS  PubMed  Google Scholar 

  39. Zhong Q, Bhattacharya S, Kotsopoulos S et al (2011) Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11(13):2167–2174. https://doi.org/10.1039/c1lc20126c

    Article  CAS  PubMed  Google Scholar 

  40. Pekin D, Skhiri Y, Baret JC et al (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166. https://doi.org/10.1039/c1lc20128j [doi]

    Article  CAS  PubMed  Google Scholar 

  41. Whale AS, Huggett JF, Cowen S et al (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40(11):e82. https://doi.org/10.1093/nar/gks203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Belgrader P, Tanner SC, Regan JF et al (2013) Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast carcinoma tissue. Clin Chem 59(6):991–994. https://doi.org/10.1373/clinchem.2012.197855

    Article  CAS  PubMed  Google Scholar 

  43. Nixon G, Garson JA, Grant P et al (2014) Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem 86(9):4387–4394. https://doi.org/10.1021/ac500208w

    Article  CAS  PubMed  Google Scholar 

  44. Sedlak RH, Kuypers J, Jerome KR (2014) A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples. Diagn Microbiol Infect Dis 80(4):285–286. https://doi.org/10.1016/j.diagmicrobio.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  45. Huggett JF, Novak T, Garson JA et al (2008) Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res Notes 1:70

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dingle TC, Sedlak RH, Cook L et al (2013) Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem 59(11):1670–1672. https://doi.org/10.1373/clinchem.2013.211045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. https://doi.org/10.1021/ac202028g [doi]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhat S, McLaughlin JL, Emslie KR (2011) Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction. Analyst 136(4):724–732. https://doi.org/10.1039/c0an00484g [doi]

    Article  CAS  PubMed  Google Scholar 

  49. Corbisier P, Pinheiro L, Mazoua S et al (2015) DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Anal Bioanal Chem 407(7):1831–1840. https://doi.org/10.1007/s00216-015-8458-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacobs BK, Goetghebeur E, Clement L (2014) Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinformatics 15:283. https://doi.org/10.1186/1471-2105-15-283

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005. https://doi.org/10.1038/nmeth.2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. JCGM (2008) JCGM 200:2012 international vocabulary of metrology–basic and general concepts and associated terms (VIM), 3rd edn. BIPM, Sèvres Cedex, France

    Google Scholar 

  53. Griffiths KR, Burke DG, Emslie KR (2011) Quantitative polymerase chain reaction: a framework for improving the quality of results and estimating uncertainty of measurement. Anal Methods 3:2201–2211

    Article  CAS  Google Scholar 

  54. Yukl SA, Kaiser P, Kim P et al (2014) Advantages of using the QIAshredder instead of restriction digestion to prepare DNA for droplet digital PCR. BioTechniques 56(4):194–196. https://doi.org/10.2144/000114159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clinical and Laboratory Standards Institute (2004) Protocols for determination of limits of detection and limits of quantitation; approved guideline, vol vol 24. CLSI, Wayne, OA, USA. Contract No.: EP17

    Google Scholar 

  56. Milbury CA, Zhong Q, Lin J et al (2014) Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif 1:8–22

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Kate Griffiths and Somanath Bhat for their inputs while reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pinheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinheiro, L., Emslie, K.R. (2018). Basic Concepts and Validation of Digital PCR Measurements. In: Karlin-Neumann, G., Bizouarn, F. (eds) Digital PCR. Methods in Molecular Biology, vol 1768. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7778-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7778-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7776-5

  • Online ISBN: 978-1-4939-7778-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics