Skip to main content

Key to Delivery: The (Epi-)genome Editing Vector Toolbox

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

Curing a genetic disease by repairing the underlying genetic defect is a fascinating concept that has been addressed so far by gene compensation therapy. For this, a functional copy of the gene in question together with elements controlling its expression is produced as a vector and introduced ex vivo into the patient’s own cells that subsequently are reinfused. Alternatively, vectors are administered directly in vivo. Although this strategy resulted in impressive therapeutic benefits for patients, the ultimate goal of gene therapy, i.e., a cure by repairing the actual genetic or epigenetic defect, remained an unresolved task. With the advent of designer DNA-binding domains, this goal is coming into reach. These domains are either combined with nucleases and used as molecular precision scissors for introducing DNA breaks at defined sites in the cell’s genome preparing for position-selective DNA repair, or they are used as programmable DNA-binding units for positioning epigenome-modifying domains to predefined target sequences. However, for reaching its full potential, these components need to be delivered into cells in an efficient and safe manner. Here, we summarize current viral and non-viral delivery approaches applicable for genome and epigenome editing and discuss their respective advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichon C, Billiet L, Midoux P (2010) Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol 21(5):640–645. https://doi.org/10.1016/j.copbio.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  2. Hsu CYM, Uludag H (2012) Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Targeting 20:301–328. https://doi.org/10.3109/1061186X.2012.655247

    Article  CAS  PubMed  Google Scholar 

  3. Youn H, Chung JK (2015) Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin Biol Ther 15(9):1337–1348. https://doi.org/10.1517/14712598.2015.1057563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaufmann KB, Buning H, Galy A, Schambach A, Grez M (2013) Gene therapy on the move. EMBO Mol Med 5(11):1642–1661. https://doi.org/10.1002/emmm.201202287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beard BC, Dickerson D, Beebe K, Gooch C, Fletcher J, Okbinoglu T, Miller DG, Jacobs MA, Kaul R, Kiem HP, Trobridge GD (2007) Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther 15(7):1356–1365. https://doi.org/10.1038/sj.mt.6300159

    Article  CAS  PubMed  Google Scholar 

  6. Buchholz CJ, Friedel T, Buning H (2015) Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol 33(12):777–790. https://doi.org/10.1016/j.tibtech.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  7. Buning H, Huber A, Zhang L, Meumann N, Hacker U (2015) Engineering the AAV capsid to optimize vector-host-interactions. Curr Opin Pharmacol 24:94–104. https://doi.org/10.1016/j.coph.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  8. Brasseur R, Divita G (2010) Happy birthday cell penetrating peptides: already 20 years. Biochim Biophys Acta 1798(12):2177–2181. https://doi.org/10.1016/j.bbamem.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Vyas PM, Payne RM (2008) TAT opens the door. Mol Ther 16(4):647–648. https://doi.org/10.1038/mt.2008.24

    Article  CAS  PubMed  Google Scholar 

  10. Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23(4):415–423. https://doi.org/10.1038/nm.4313

    Article  CAS  PubMed  Google Scholar 

  11. Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (2014) megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42(4):2591–2601. https://doi.org/10.1093/nar/gkt1224

    Article  CAS  PubMed  Google Scholar 

  12. McMahon MA, Rahdar M, Porteus M (2011) Gene editing: not just for translation anymore. Nat Methods 9(1):28–31. https://doi.org/10.1038/nmeth.1811

    Article  CAS  PubMed  Google Scholar 

  13. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147. https://doi.org/10.1038/cr.2007.111

    Article  CAS  PubMed  Google Scholar 

  14. Skipper KA, Mikkelsen JG (2015) Delivering the goods for genome engineering and editing. Hum Gene Ther 26(8):486–497. https://doi.org/10.1089/hum.2015.063

    Article  CAS  PubMed  Google Scholar 

  15. Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL (2014) Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32(9):941–946. https://doi.org/10.1038/nbt.2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  17. Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, Zwart W, Elkon R, Agami R (2016) Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 34(2):192–198. https://doi.org/10.1038/nbt.3450

    Article  CAS  PubMed  Google Scholar 

  18. Cao J, Wu L, Zhang SM, Lu M, Cheung WK, Cai W, Gale M, Xu Q, Yan Q (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44(19):e149. https://doi.org/10.1093/nar/gkw660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25(11):1298–1306. https://doi.org/10.1038/nbt1353

    Article  CAS  PubMed  Google Scholar 

  20. Ortinski PI, O’Donovan B, Dong X, Kantor B (2017) Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol Ther Methods Clin Dev 5:153–164. https://doi.org/10.1016/j.omtm.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosewell A, Vetrini F, Ng P (2011) Helper-dependent adenoviral vectors. J Genet Syndr Gene Ther Suppl 5

    Google Scholar 

  22. Maetzig T, Galla M, Baum C, Schambach A (2011) Gammaretroviral Vectors: Biology, Technology and Application. Viruses 3:677–713. https://doi.org/10.3390/v3060677

    Article  PubMed  PubMed Central  Google Scholar 

  23. Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, Waddington SN, Thrasher AJ, Muntoni F, Morgan JE, Danos O (2017) Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep 7:44775. https://doi.org/10.1038/srep44775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86. https://doi.org/10.1038/mt.2009.255

    Article  CAS  PubMed  Google Scholar 

  25. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Goncalves MA (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5):e63. https://doi.org/10.1093/nar/gks1446

    Article  CAS  PubMed  Google Scholar 

  26. Gee P, Xu H, Hotta A (2017) Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of Duchenne muscular dystrophy. Stem Cells Int 2017:8765154. https://doi.org/10.1155/2017/8765154

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guiraud S, Chen H, Burns DT, Davies KE (2015) Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol 100(12):1458–1467. https://doi.org/10.1113/EP085308

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maggio I, Stefanucci L, Janssen JM, Liu J, Chen X, Mouly V, Goncalves MA (2016) Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res 44(3):1449–1470. https://doi.org/10.1093/nar/gkv1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maggio I, Liu J, Janssen JM, Chen X, Goncalves MA (2016) Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci Rep 6:37051. https://doi.org/10.1038/srep37051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, Zhu H, Ma J, Han R (2016) CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24(3):564–569. https://doi.org/10.1038/mt.2015.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115(5):488–492. https://doi.org/10.1161/CIRCRESAHA.115.304351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, Ma N, Lu W, Hu K, Han H, Yu Y, Huang Y, Liu M, Li D (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8(5):477–488. https://doi.org/10.15252/emmm.201506039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, Rohde ME, Wong SY, Davidson RJ, Zhou S, Gregory PD, Holmes MC, High KA (2013) Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122(19):3283–3287. https://doi.org/10.1182/blood-2013-04-497354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475(7355):217–221. https://doi.org/10.1038/nature10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haworth KG, Peterson CW, Kiem HP (2017) CCR5-edited gene therapies for HIV cure: closing the door to viral entry. Cytotherapy. https://doi.org/10.1016/j.jcyt.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  36. Chamberlain JR, Chamberlain JS (2017) Progress toward gene therapy for Duchenne muscular dystrophy. Mol Ther 25(5):1125–1131. https://doi.org/10.1016/j.ymthe.2017.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nienhuis AW, Nathwani AC, Davidoff AM (2017) Gene therapy for hemophilia. Mol Ther 25(5):1163–1167. https://doi.org/10.1016/j.ymthe.2017.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng YQ, Tang LS, Yoshida S, Zhou YD (2017) Applications of CRISPR/Cas9 in retinal degenerative diseases. Int J Ophthalmol 10(4):646–651. https://doi.org/10.18240/ijo.2017.04.23

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, Li H, Booze R, Gordon J, Hu W, Khalili K (2016) Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23(8–9):690–695. https://doi.org/10.1038/gt.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, Li F, Xiao W, Zhao H, Dai S, Qin X, Mo X, Young WB, Khalili K, Hu W (2017) In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 25(5):1168–1186. https://doi.org/10.1016/j.ymthe.2017.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T, Swaroop A, Wu Z (2017) Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun 8:14716. https://doi.org/10.1038/ncomms14716

    Article  PubMed  PubMed Central  Google Scholar 

  43. Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J (2015) Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther 26(2):114–126. https://doi.org/10.1089/hum.2014.111

    Article  CAS  PubMed  Google Scholar 

  44. Song F, Stieger K (2017) Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucleic Acids 7:53–60. https://doi.org/10.1016/j.omtn.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384. https://doi.org/10.1038/nature13589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Song L, Liu X, Yang X, Li X, He T, Wang N, Yang S, Yu C, Yin T, Wen Y, He Z, Wei X, Su W, Wu Q, Yao S, Gong C, Wei Y (2017) Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 11(1):95–111. https://doi.org/10.1021/acsnano.6b04261

    Article  CAS  PubMed  Google Scholar 

  47. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53. https://doi.org/10.1016/j.jbiotec.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  48. Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S, Qin L, Chen X (2013) Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen (Lond) 2(1):5. https://doi.org/10.1186/2045-9769-2-5

    Article  CAS  Google Scholar 

  49. Liu J, Gaj T, Wallen MC, Barbas CF 3rd (2015) Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids 4:e232. https://doi.org/10.1038/mtna.2015.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9(8):805–807. https://doi.org/10.1038/nmeth.2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramakrishna S, Kim YH, Kim H (2013) Stability of zinc finger nuclease protein is enhanced by the proteasome inhibitor MG132. PLoS One 8(1):e54282. https://doi.org/10.1371/journal.pone.0054282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Staahl BT, Benekareddy M, Coulon-Bainier C, Banfal AA, Floor SN, Sabo JK, Urnes C, Munares GA, Ghosh A, Doudna JA (2017) Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 35(5):431–434. https://doi.org/10.1038/nbt.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim KE, Kim JH, Kim JS (2017) Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27(3):419–426. https://doi.org/10.1101/gr.219089.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11(3):2452–2458. https://doi.org/10.1021/acsnano.6b07600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, Marson A (2015) Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A 112(33):10437–10442. https://doi.org/10.1073/pnas.1512503112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu W, Lu Z, Li F, Wang W, Qian N, Duan J, Zhang Y, Wang F, Chen T (2017) Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci U S A 114(7):1660–1665. https://doi.org/10.1073/pnas.1614775114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma Y, Han X, Quintana Bustamante O, Bessa de Castro R, Zhang K, Zhang P, Li Y, Liu Z, Liu X, Ferrari M, Hu Z, Carlos Segovia J, Qin L (2017) Highly efficient genome editing of human hematopoietic stem cells via a nano-silicon-blade delivery approach. Integr Biol (Camb) 9(6):548–554. https://doi.org/10.1039/c7ib00060j

    Article  CAS  Google Scholar 

  58. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34(3):328–333. https://doi.org/10.1038/nbt.3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539(7629):384–389. https://doi.org/10.1038/nature20134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaj T, Staahl BT, Rodrigues GMC, Limsirichai P, Ekman FK, Doudna JA, Schaffer DV (2017) Targeted gene knock-in by homology-directed genome editing using Cas9 ribonucleoprotein and AAV donor delivery. Nucleic Acids Res 45(11):e98. https://doi.org/10.1093/nar/gkx154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M, Khan IF, Singh S, Song Y, Gwiazda K, Sahni J, Jarjour J, Astrakhan A, Wagner TA, Scharenberg AM, Rawlings DJ (2015) Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 7(307):307ra156. https://doi.org/10.1126/scitranslmed.aac5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Y, Wang Y, Chang T, Huang H, Yee JK (2017) Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells. Nucleic Acids Res 45(5):e29. https://doi.org/10.1093/nar/gkw1057

    Article  CAS  PubMed  Google Scholar 

  63. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC, Gregory PD, van der Burg M, Gentner B, Montini E, Lombardo A, Naldini L (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510(7504):235–240. https://doi.org/10.1038/nature13420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113. https://doi.org/10.1016/j.tig.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  65. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brookes E, Shi Y (2014) Diverse epigenetic mechanisms of human disease. Annu Rev Genet 48:237–268. https://doi.org/10.1146/annurev-genet-120213-092518

    Article  CAS  PubMed  Google Scholar 

  67. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. https://doi.org/10.1038/ng1089

    Article  CAS  PubMed  Google Scholar 

  68. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13(3):263–273

    Article  CAS  PubMed  Google Scholar 

  69. Stricker SH, Koferle A, Beck S (2017) From profiles to function in epigenomics. Nat Rev Genet 18(1):51–66. https://doi.org/10.1038/nrg.2016.138

    Article  CAS  PubMed  Google Scholar 

  70. Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, Crawford GE, Reddy TE, Gersbach CA (2017) CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 35(6):561–568. https://doi.org/10.1038/nbt.3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mussolino C, Mlambo T, Cathomen T (2015) Proven and novel strategies for efficient editing of the human genome. Curr Opin Pharmacol 24:105–112. https://doi.org/10.1016/j.coph.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  72. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12):1143–1149. https://doi.org/10.1038/nmeth.3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219–232.e214. https://doi.org/10.1016/j.cell.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5):510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476. https://doi.org/10.1038/nature12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cho HS, Kang JG, Lee JH, Lee JJ, Jeon SK, Ko JH, Kim DS, Park KH, Kim YS, Kim NS (2015) Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells. Oncotarget 6(27):23837–23844. https://doi.org/10.18632/oncotarget.4340

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247.e217. https://doi.org/10.1016/j.cell.2016.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li K, Pang J, Cheng H, Liu WP, Di JM, Xiao HJ, Luo Y, Zhang H, Huang WT, Chen MK, Li LY, Shao CK, Feng YH, Gao X (2015) Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 6(12):10030–10044. https://doi.org/10.18632/oncotarget.3192

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stolzenburg S, Beltran AS, Swift-Scanlan T, Rivenbark AG, Rashwan R, Blancafort P (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34(43):5427–5435. https://doi.org/10.1038/onc.2014.470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Braun CJ, Bruno PM, Horlbeck MA, Gilbert LA, Weissman JS, Hemann MT (2016) Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci U S A 113(27):E3892–E3900. https://doi.org/10.1073/pnas.1600582113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang YH, Zhou Y, Li W, Goodell MA (2017) Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun 8:16026. https://doi.org/10.1038/ncomms16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34(10):1060–1065. https://doi.org/10.1038/nbt.3658

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegard Büning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Just, S., Büning, H. (2018). Key to Delivery: The (Epi-)genome Editing Vector Toolbox. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics