Intravital Imaging of Mouse Bone Marrow: Hemodynamics and Vascular Permeability

  • Yookyung Jung
  • Joel A. Spencer
  • Anthony P. Raphael
  • Juwell W. Wu
  • Clemens Alt
  • Judith R. Runnels
  • Briaira Geiger
  • Charles P. LinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1763)


The bone marrow is a unique microenvironment where blood cells are produced and released into the circulation. At the top of the blood cell lineage are the hematopoietic stem cells (HSC), which are thought to reside in close association with the bone marrow vascular endothelial cells (Morrison and Scadden, Nature 505:327–334, 2014). Recent efforts at characterizing the HSC niche have prompted us to make close examinations of two distinct types of blood vessel in the bone marrow, the arteriolar vessels originating from arteries and sinusoidal vessels connected to veins. We found the two vessel types to exhibit different vascular permeabilites, hemodynamics, cell trafficking behaviors, and oxygen content (Itkin et al., Nature 532:323–328, 2016; Spencer et al., Nature 508:269–273, 2014). Here, we describe a method to quantitatively measure the permeability and hemodynamics of arterioles and sinusoids in murine calvarial bone marrow using intravital microscopy.

Key words

Bone marrow blood vessel Arterioles Sinusoids Permeability Hemodynamics Flow speed Blood vessel diameter Mouse restraint Intravital imaging 



This work is supported in part by NIH grant EB017274, DK103074, and HL 095489 (to C.P.L.), by IBS-R023-Y1 (to Y.J.), and by the Australian National Health and Medical Research Council (NHMRC), Early Career Fellowship #APP1088318 (to A.P.R.).


  1. 1.
    Spencer JA, Ferraro F, Roussakis E et al (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269–273CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kunisaki Y et al (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nombela-Arrieta C et al (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li XM, Hu Z, Jorgenson ML, Slayton WB (2009) High levels of acetylated low-density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation 120:1910–1918CrossRefPubMedGoogle Scholar
  5. 5.
    Itkin T, Gur-Cohen S, Spencer JA et al (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328CrossRefPubMedGoogle Scholar
  6. 6.
    Veilleux I, Spencer JA, Biss DP et al (2008) In vivo cell tracking with video rate multimodality laser scanning microscopy. IEEE J Sel Top Quantum Electron 14:10–18CrossRefGoogle Scholar
  7. 7.
    Lo Celso C, Lin CP, Scadden DT (2011) In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Protoc 6:1–14CrossRefPubMedGoogle Scholar
  8. 8.
    Wu JW, Runnels JM, Lin CP (2014) Intravital imaging of hematopoietic stem cells in the mouse skull. Methods Mol Biol 1185:247–265CrossRefPubMedGoogle Scholar
  9. 9.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefPubMedGoogle Scholar
  11. 11.
    Tseng Q, Wang I, Duchemin-Pelletier E et al (2011) A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11:2231CrossRefPubMedGoogle Scholar
  12. 12.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Yookyung Jung
    • 1
    • 3
  • Joel A. Spencer
    • 1
    • 2
    • 4
  • Anthony P. Raphael
    • 1
    • 5
  • Juwell W. Wu
    • 1
  • Clemens Alt
    • 1
  • Judith R. Runnels
    • 1
  • Briaira Geiger
    • 6
  • Charles P. Lin
    • 1
    Email author
  1. 1.Center for Systems Biology and Wellman Center for PhotomedicineMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Center for Regenerative MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Center for Molecular Spectroscopy and DynamicsInstitute for Basic Science (IBS)SeoulRepublic of Korea
  4. 4.School of EngineeringUniversity of California MercedMercedUSA
  5. 5.Dermatology Research CentreTranslational Research Institute, School of Medicine, The University of QueenslandSt LuciaAustralia
  6. 6.Department of ChemistryRichard Stockton College of New JerseyGallowayUSA

Personalised recommendations