Characterizing Protein-Protein Interactions Using Deep Sequencing Coupled to Yeast Surface Display

  • Angelica V. Medina-Cucurella
  • Timothy A. Whitehead
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)


In this chapter, we discuss a method to determine the affinity and specificity of nearly all single-point mutants for a full-length protein binder. This method combines deep sequencing, comprehensive mutagenesis, yeast surface display, and fluorescence-activated cell sorting. This approach has been used to study sequence-function relationships for protein-protein interactions. The data can be used to determine the fine conformational epitope on the protein binder.

Key words

Deep sequencing Yeast surface display Nicking mutagenesis FACS Conformational epitope mapping 



This work was supported by NSF CAREER (Award #1254238) to T.A.W. and a NIH T32 Biotechnology Training Grant (Award # T32-GM110523) to A.M.C.


  1. 1.
    Weiss GA, Watanabe CK, Zhong A et al (2000) Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc Natl Acad Sci U S A 97:8950–8954. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chao G, Cochran JR, Dane Wittrup K (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550. CrossRefPubMedGoogle Scholar
  3. 3.
    Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11:801–807. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Whitehead TA, Chevalier A, Song Y et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30:543–548. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Van Blarcom T, Rossi A, Foletti D et al (2015) Precise and efficient antibody epitope determination through library design, yeast display and next-generation sequencing. J Mol Biol 427:1513–1534. CrossRefPubMedGoogle Scholar
  6. 6.
    Doolan KM, Colby DW (2015) Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J Mol Biol 427:328–340. CrossRefPubMedGoogle Scholar
  7. 7.
    Kowalsky CA, Faber MS, Nath A et al (2015) Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep sequencing. J Biol Chem 290:26457–26470. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fowler DM, Araya CL, Fleishman SJ et al (2010) High-resolution mapping of protein sequence-function relationships. Nat Methods 7:741–746. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. CrossRefPubMedGoogle Scholar
  10. 10.
    Van DJA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol 1131:151–181. CrossRefGoogle Scholar
  11. 11.
    Mata-Fink J, Kriegsman B, Yu HX et al (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456. CrossRefPubMedGoogle Scholar
  12. 12.
    Adams RM, Mora T, Walczak AM et al (2016) Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves. Elife 5:5980–5985. CrossRefGoogle Scholar
  13. 13.
    Wrenbeck EE, Klesmith JR, Stapleton JA et al (2016) Plasmid-based one-pot saturation mutagenesis. Nat Methods 13:928–930. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. CrossRefPubMedGoogle Scholar
  15. 15.
    Klesmith JR, Bacik J-P, Wrenbeck EE et al (2017) Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning. Proc Natl Acad Sci U S A 114:2265–2270. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wrenbeck E, Klesmith J, Stapleton J, Whitehead T (2016) Nicking mutagenesis: comprehensive single-site saturation mutagenesis. Protoc Exch.
  17. 17.
    Sambrook J, Russell DW (2006) Transformation of E. coli by electroporation. CSH Protoc 2006:pdb.prot3933. CrossRefPubMedGoogle Scholar
  18. 18.
    Kowalsky CA, Klesmith JR, Stapleton JA et al (2015) High-resolution sequence-function mapping of full-length proteins. PLoS One 10:e0118193. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fowler DM, Araya CL, Gerard W, Fields S (2011) Enrich: software for analysis of protein function by enrichment and depletion of variants. Bioinformatics 27:3430–3431. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kowalsky CA, Whitehead TA (2016) Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing. Proteins 84:1914–1928. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angelica V. Medina-Cucurella
    • 1
  • Timothy A. Whitehead
    • 1
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Department of Biosystems and Agricultural EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations