Advertisement

Preparation of Tunable Microchips to Visualize Native Protein Complexes for Single-Particle Electron Microscopy

  • Brian L. Gilmore
  • A. Cameron Varano
  • William Dearnaley
  • Yanping Liang
  • Bridget C. Marcinkowski
  • Madeline J. Dukes
  • Deborah F. Kelly
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)

Abstract

Recent advances in technology have enabled single-particle electron microscopy (EM) to rapidly progress as a preferred tool to study protein assemblies. Newly developed materials and methods present viable alternatives to traditional EM specimen preparation. Improved lipid monolayer purification reagents offer considerable flexibility, while ultrathin silicon nitride films provide superior imaging properties to the structural study of protein complexes. Here, we describe the steps for combining monolayer purification with silicon nitride microchips to create a tunable approach for the EM community.

Key words

Electron microscopy Single-particle analysis Affinity capture Silicon nitride Microchips Protein assemblies 

Notes

Acknowledgments

This work was supported by NIH/NCI grant R01CA193578 to D.F.K.

References

  1. 1.
    Frank J (2009) Single-particle reconstruction of biological macromolecules in electron microscopy—30 years. Q Rev Biophys 42(3):139–158. https://doi.org/10.1017/S0033583509990059 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kelly DF, Dukovski D, Walz T (2010a) A practical guide to the use of monolayer purification and affinity grids. Methods Enzymol 481:83–107. https://doi.org/10.1016/S0076-6879(10)81004-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Kubalek EW, Le Grice S, Brown PO (1994) Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J Struct Biol 113(2):117–123. https://doi.org/10.1006/jsbi.1994.1039 CrossRefPubMedGoogle Scholar
  4. 4.
    Kelly DF, Dukovski D, Walz T (2008b) Monolayer purification: a rapid method for isolating protein complexes for single-particle electron microscopy. Proc Natl Acad Sci U S A 105(12):4703–4708. https://doi.org/10.1073/pnas.0800867105 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kelly DF, Abeyrathne PD, Dukovski D, Walz T (2008) The Affinity Grid: a pre-fabricated EM grid for monolayer purification. J Mol Biol 382(2):423–433. https://doi.org/10.1016/j.jmb.2008.07.023 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kelly DF, Lake RJ, Middelkoop TC, Fan H-Y, Artavanis-Tsakonas S, Walz T (2010c) Molecular structure and dimeric organization of the notch extracellular domain as revealed by electron microscopy. PLoS One 5(5):e10532CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tanner JR, Degen K, Gilmore BL, Kelly DF (2012) Capturing RNA-dependent pathways for cryo-EM analysis. Comput Struct Biotechnol J 1(1):e201204003. https://doi.org/10.5936/csbj.201204003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kelly DF, Dukovski D, Walz T (2010b) Strategy for the use of affinity grids to prepare non-His-tagged macromolecular complexes for single-particle electron microscopy. J Mol Biol 400(4):675–681. https://doi.org/10.1016/j.jmb.2010.05.045 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sharma G, Pallesen J, Das S, Grassucci R, Langlois R, Hampton CM et al (2013) Affinity grid-based cryo-EM of PKC binding to RACK1 on the ribosome. J Struct Biol 181(2):190–194. https://doi.org/10.1016/j.jsb.2012.11.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Kiss G, Chen X, Brindley MA, Campbell P, Afonso CL, Ke Z et al (2014) Capturing enveloped viruses on affinity grids for downstream cryo-electron microscopy applications. Microsc Microanal 20(1):164–174. https://doi.org/10.1017/S1431927613013937 CrossRefPubMedGoogle Scholar
  11. 11.
    Guimei Y, Kunpeng L, Pengwei H, Xi J, Wen J (2016) Antibody-based affinity cryoelectron microscopy at 2.6-Å resolution. Structure 24(11):1984–1990. https://doi.org/10.1016/j.str.2016.09.008 CrossRefGoogle Scholar
  12. 12.
    Degen K, Dukes M, Tanner JR, Kelly DF (2012) The development of affinity capture devices—a nanoscale purification platform for biological in situ transmission electron microscopy. RSC Adv. https://doi.org/10.1039/c2ra01163h
  13. 13.
    Gilmore BL, Showalter SP, Dukes MJ, Tanner JR, Demmert AC, McDonald SM, Kelly DF (2013a) Visualizing viral assemblies in a nanoscale biosphere. Lab Chip 13(2):216–219. https://doi.org/10.1039/c2lc41008g CrossRefPubMedGoogle Scholar
  14. 14.
    Dukes MJ, Gilmore BL, Tanner JR, McDonald SM, Kelly DF (2013) In situ TEM of biological assemblies in liquid. J Vis Exp 82:50936. https://doi.org/10.3791/50936 CrossRefGoogle Scholar
  15. 15.
    Tanner JR, Demmert AC, Dukes MJ (2013) Cryo-SiN—an alternative substrate to visualize active viral assemblies. J Analyt Mol Tech 1(1):6Google Scholar
  16. 16.
    Pohlmann ES, Patel K, Guo S, Dukes MJ, Sheng Z, Kelly DF (2015) Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett 15(4):2329–2335. https://doi.org/10.1021/nl504481k CrossRefPubMedGoogle Scholar
  17. 17.
    Gilmore BL, Tanner JR, McKell AO, Boudreaux CE, Dukes MJ, McDonald SM, Kelly DF (2013b) Molecular surveillance of viral processes using silicon nitride membranes. Micromachines 4:90–102. https://doi.org/10.3390/mi4010090 CrossRefGoogle Scholar
  18. 18.
    Winton CE, Gilmore BL, Demmert AC, Karageorge V, Sheng Z, Kelly DF (2016) A microchip platform for structural oncology applications. NPJ Breast Cancer 2. https://doi.org/10.1038/npjbcancer.2016.16
  19. 19.
    Gilmore BL, Winton CE, Demmert AC, Tanner JR, Bowman S, Karageorge V et al (2015) A molecular toolkit to visualize native protein assemblies in the context of human disease. Sci Rep 5:14440. https://doi.org/10.1038/srep14440 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116(1):190–199CrossRefPubMedGoogle Scholar
  21. 21.
    Scheres SHW (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415(2):406–418. https://doi.org/10.1016/j.jmb.2011.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E (2016) Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–365. https://doi.org/10.1038/nature17970 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE (2001) Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol 8(10):833–837. https://doi.org/10.1038/nsb1001-833 CrossRefPubMedGoogle Scholar
  24. 24.
    Williams RS, Green R, Glover JN (2001) Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat Struct Biol 8:838–842. https://doi.org/10.1038/nsb1001-838 CrossRefPubMedGoogle Scholar
  25. 25.
    Gilmore BL, Liang Y, Winton CE, Patel K, Karageorge V, Varano AC, Dearnaley W, Sheng Z, Kelly DF (2017) Molecular analysis of BRCA1 in human breast cancer cells under oxidative stress. Sci Rep 7:43435. https://doi.org/10.1038/srep43435 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Brian L. Gilmore
    • 1
  • A. Cameron Varano
    • 1
    • 2
  • William Dearnaley
    • 1
  • Yanping Liang
    • 1
  • Bridget C. Marcinkowski
    • 1
  • Madeline J. Dukes
    • 3
  • Deborah F. Kelly
    • 1
    • 4
  1. 1.Virginia Tech Carilion Research InstituteRoanokeUSA
  2. 2.Translational Biology, Medicine, and Health Graduate ProgramVirginia TechBlacksburgUSA
  3. 3.Protochips, Inc., Applications ScienceRaleighUSA
  4. 4.Department of Biological SciencesVirginia TechBlacksburgUSA

Personalised recommendations