Flexible Protein-Protein Docking with SwarmDock

  • Iain H. Moal
  • Raphael A.  G. Chaleil
  • Paul A. Bates
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)


The atomic structures of protein complexes can provide useful information for drug design, protein engineering, systems biology, and understanding pathology. Obtaining this information experimentally can be challenging. However, if the structures of the subunits are known, then it is often possible to model the complex computationally. This chapter provide practical guidelines for docking proteins using the SwarmDock flexible protein-protein docking method, providing an overview of the factors that need to be considered when deciding whether docking is likely to be successful, the preparation of structural input, generation of docked poses, analysis and ranking of docked poses, and the validation of models using external data.

Key words

Molecular modelling Docking Protein-protein interaction Computational chemistry 



This work was supported by the European Molecular Biology Laboratory [IHM], the Biotechnology and Biological Sciences Research Council [Future Leader Fellowship BB/N011600/1 to IHM], and the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001003), the UK Medical Research Council (FC001003), and the Wellcome Trust (FC001003) [R.A.G.C., P.A.B.].


  1. 1.
    Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:310–314CrossRefGoogle Scholar
  2. 2.
    Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Garzon JI, Lopéz-Blanco JR, Pons C et al (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25(19):2544–2551CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Macindoe G, Mavridis L, Venkatraman V et al (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mashiach E, Schneidman-Duhovny D, Peri A et al (2010) An integrated suite of fast docking algorithms. Proteins 78(15):3197–3204CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huang S-Y, Zou X (2010) MDockPP: a hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Proteins 78(15):3096–3103CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9):e24657CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29(13):1698–1699CrossRefPubMedGoogle Scholar
  9. 9.
    van Zundert GCP, Bonvin AMJJ (2014) Modeling protein-protein complexes using the HADDOCK webserver. Methods Mol Biol 1137:163–179CrossRefPubMedGoogle Scholar
  10. 10.
    Viswanath S, Ravikant DVS, Elber R (2014) DOCK/PIERR: web server for structure prediction of protein-protein complexes. Methods Mol Biol 1137:199–207CrossRefPubMedGoogle Scholar
  11. 11.
    Esquivel-Rodriguez J, Filos-Gonzalez V, Li B, Kihara D (2014) Pairwise and multimeric protein-protein docking using the LZerD program suite. Methods Mol Biol 1137:209–234CrossRefPubMedGoogle Scholar
  12. 12.
    de Vries SJ, Schindler CEM, Chauvot de Beauchêne I, Zacharias M (2015) A web interface for easy flexible protein-protein docking with ATTRACT. Biophys J 108(3):462–465CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kozakov D, Hall D, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee H, Seok C (2017) Template-based prediction of protein-peptide interactions by using GalaxyPepDock. Methods Mol Biol 1561:37–47CrossRefPubMedGoogle Scholar
  15. 15.
    Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci 11(10):3623–3648CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li X, Moal IH, Bates PA (2010) Detection and refinement of encounter complexes for protein–protein docking: taking account of macromolecular crowding. Proteins 78(15):3189–3196CrossRefPubMedGoogle Scholar
  17. 17.
    Torchala M, Moal IH, Chaleil RA et al (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29(6):807–809CrossRefPubMedGoogle Scholar
  18. 18.
    Torchala M, Bates PA (2014) Predicting the structure of protein-protein complexes using the SwarmDock web server. Methods Mol Biol 1137:181–197CrossRefPubMedGoogle Scholar
  19. 19.
    Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins 81(11):1874–1884CrossRefPubMedGoogle Scholar
  20. 20.
    Moal IH, Torchala M, Bates PA, Fernandez-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14:286CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Barradas-Bautista D, Moal IH, Fernández-Recio J (2017) A systematic analysis of scoring functions in rigid-body protein docking: the delicate balance between the predictive rate improvement and the risk of overtraining. Proteins.
  22. 22.
    Hayes TW, Moal IH (2017) Modeling protein conformational transition pathways using collective motions and the LASSO method. J Chem Theory Comput 13(3):1401–1410CrossRefPubMedGoogle Scholar
  23. 23.
    Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56(1):93–101CrossRefPubMedGoogle Scholar
  24. 24.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE International Conference on Neural Networks, PerthCrossRefGoogle Scholar
  25. 25.
    Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. Math Oper Res 6(1):19–30CrossRefGoogle Scholar
  26. 26.
    Tobi D (2010) Designing coarse grained-and atom based-potentials for protein-protein docking. BMC Struct Biol 10:40CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Torchala M, Moal IH, Chaleil RA et al (2013) A Markov-chain model description of binding funnels to enhance the ranking of docked solutions. Proteins 81(12):2143–2149CrossRefPubMedGoogle Scholar
  28. 28.
    Moal IH, Barradas-Bautista D, Jiménez-García B et al (2017) IRaPPA: information retrieval based integration of biophysical models for protein assembly selection. Bioinformatics 33(12):1806–1813. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dobbins SE, Lesk VI, Sternberg MJE (2008) Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc Natl Acad Sci U S A 105(30):10390–10395CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karaca E (1993) Bonvin AMJJ (2011) a multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 19(4):555–565CrossRefGoogle Scholar
  31. 31.
    Marsh JA, Teichmann SA (2011) Relative solvent accessible surface area predicts protein conformational changes upon binding. Struct 19(6):859–867CrossRefGoogle Scholar
  32. 32.
    Chen H, Sun Y, Shen Y (2017) Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility. Proteins 85(3):544–556CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Q, Canutescu AA, Dunbrack RL (2008) SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 3(12):1832–1847CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Soto CS, Fasnacht M, Zhu J et al (2008) Loop modeling: sampling, filtering, and scoring. Proteins 70(3):834–843CrossRefPubMedGoogle Scholar
  35. 35.
    Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Suhre K, Sanejouand Y-H (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Hoboken, NJGoogle Scholar
  38. 38.
    Moal IH, Jimenez-Garcia B, Fernandez-Recio J (2015) CCharPPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics 31(1):123–125CrossRefPubMedGoogle Scholar
  39. 39.
    Pfeiffenberger E, Chaleil RAG, Moal IH, Bates PA (2017) A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison. Proteins 85(3):528–543CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725CrossRefPubMedGoogle Scholar
  41. 41.
    Svergun DI, Richard S, Koch MH et al (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A 95(5):2267–2272CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Svergun D, Barberato C, Koch MHJ (1995) CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773CrossRefGoogle Scholar
  43. 43.
    Shvartsburg AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261(1–2):86–91CrossRefGoogle Scholar
  44. 44.
    Lasker K, Sali A, Wolfson HJ (2010) Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins 78(15):3205–3211CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Russel D, Lasker K, Webb B et al (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Moal IH, Fernández-Recio J (2012) SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics 28(20):2600–2607CrossRefPubMedGoogle Scholar
  47. 47.
    Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11(8):801–807CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Andreani J, Faure G, Guerois R (2012) Versatility and invariance in the evolution of homologous heteromeric interfaces. PLoS Comput Biol 8(8):e1002677CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Reichmann D, Rahat O, Albeck S et al (2005) The modular architecture of protein-protein binding interfaces. Proc Natl Acad Sci U S A 102(1):57–62CrossRefPubMedGoogle Scholar
  50. 50.
    McDowall MD, Scott MS, Barton GJ (2009) PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 37:D651–D656CrossRefPubMedGoogle Scholar
  51. 51.
    Liu F, Rijkers DTS, Post H, Heck AJR (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods 12(12):1179–1184CrossRefPubMedGoogle Scholar
  52. 52.
    Sethi R, Seppälä J, Tossavainen H et al (2014) A novel structural unit in the N-terminal region of filamins. J Biol Chem 289(12):8588–8598CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kao A, Chiu C-l, Vellucci D et al (2011) Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol Cell Proteomics.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Iain H. Moal
    • 1
  • Raphael A.  G. Chaleil
    • 2
  • Paul A. Bates
    • 2
  1. 1.European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL-EBI)CambridgeUK
  2. 2.Biomolecular Modelling LaboratoryThe Francis Crick InstituteLondonUK

Personalised recommendations