Expressing Multi-subunit Complexes Using biGBac

  • Florian Weissmann
  • Jan-Michael Peters
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)


The reconstitution of recombinant protein complexes is facilitated by methods that allow coexpression of their subunits from a single vector. Here we describe a detailed step-by-step protocol for the biGBac cloning method which can be used to generate baculoviral transfer vectors coding for up to 25 subunits of a protein complex (Weissmann et al., Proc Natl Acad Sci U S A 113(19):E2564–E2569, 2016). biGBac is based on Gibson assembly reactions, optimized DNA linker sequences, and uses a hierarchical two-step assembly procedure. In the first assembly step, up to five expression cassettes are combined to generate a polygene cassette. In the second step, up to five polygene cassettes can then be combined to generate transfer vectors coding for up to 25 subunits.

Key words

Protein complex Baculovirus-insect cell expression BEVS Multigene expression Gibson assembly 



We would like to thank Georg Petzold and Brenda Schulman and her laboratory members for their invaluable contributions during development and validation of the biGBac technique. Research in the laboratory of J.-M.P. is supported by Boehringer Ingelheim, the Austrian Science Fund (SFB-F34 and Wittgenstein award Z196-B20), the Austrian Research Promotion Agency (headquarter grants FFG-834223 and FFG-852936, Laura Bassi Centre for Optimized Structural Studies grant FFG-840283), and the European Union (Seventh Framework Programme Grant 227764 MitoSys).


  1. 1.
    Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92(3):291–294CrossRefPubMedGoogle Scholar
  2. 2.
    Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566–4579PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bieniossek C, Imasaki T, Takagi Y, Berger I (2012) MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37(2):49–57. CrossRefPubMedGoogle Scholar
  4. 4.
    Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22(12):1583–1587. CrossRefPubMedGoogle Scholar
  5. 5.
    Fitzgerald DJ, Berger P, Schaffitzel C, Yamada K, Richmond TJ, Berger I (2006) Protein complex expression by using multigene baculoviral vectors. Nat Methods 3(12):1021–1032. CrossRefPubMedGoogle Scholar
  6. 6.
    Vijayachandran LS, Viola C, Garzoni F, Trowitzsch S, Bieniossek C, Chaillet M, Schaffitzel C, Busso D, Romier C, Poterszman A, Richmond TJ, Berger I (2011) Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol 175(2):198–208. CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Z, Yang J, Barford D (2016) Recombinant expression and reconstitution of multiprotein complexes by the USER cloning method in the insect cell-baculovirus expression system. Methods 95:13–25. CrossRefPubMedGoogle Scholar
  8. 8.
    Fitzgerald DJ, Schaffitzel C, Berger P, Wellinger R, Bieniossek C, Richmond TJ, Berger I (2007) Multiprotein expression strategy for structural biology of eukaryotic complexes. Structure 15(3):275–279. CrossRefPubMedGoogle Scholar
  9. 9.
    Weissmann F, Petzold G, VanderLinden R, Huis In ‘t Veld PJ, Brown NG, Lampert F, Westermann S, Stark H, Schulman BA, Peters JM (2016) biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc Natl Acad Sci U S A 113(19):E2564–E2569. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. CrossRefPubMedGoogle Scholar
  11. 11.
    Qiao R, Weissmann F, Yamaguchi M, Brown NG, VanderLinden R, Imre R, Jarvis MA, Brunner MR, Davidson IF, Litos G, Haselbach D, Mechtler K, Stark H, Schulman BA, Peters JM (2016) Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A 113(19):E2570–E2578. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yamaguchi M, VanderLinden R, Weissmann F, Qiao R, Dube P, Brown NG, Haselbach D, Zhang W, Sidhu SS, Peters JM, Stark H, Schulman BA (2016) Cryo-EM of mitotic checkpoint complex-bound APC/C reveals reciprocal and conformational regulation of ubiquitin ligation. Mol Cell 63(4):593–607. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CRR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA (2016) Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165(6):1440–1453. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I (2010) New baculovirus expression tools for recombinant protein complex production. J Struct Biol 172(1):45–54. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria

Personalised recommendations